검색
Article Search

JMB Journal of Microbiolog and Biotechnology

OPEN ACCESS eISSN 0454-8124
pISSN 1225-6951
QR Code

Articles

Kyungpook Mathematical Journal -0001; 56(3): 845-859

Published online November 30, -0001

Copyright © Kyungpook Mathematical Journal.

Hermite-Hadamard-Fejér Type Inequalities for Harmonically Quasi-convex Functions via Fractional Integrals

Imdat Iscan1, Mehmet Kunt2

Department of Mathematics, Gireson University, 28200, Gireson, Turkey1
Department of Mathematics, Karadeniz Technical University, 61080, Trabzon, Turkey2

Received: July 26, 2015; Accepted: March 16, 2016

In this paper, some Hermite-Hadamard-Fejér type integral inequalities for harmonically quasi-convex functions in fractional integral forms have been obtained.

Keywords:

Hermite-Hadamard inequality, Hermite-Hadamard-Fejè,r inequality, Riemann-Liouville fractional integral, harmonically ,quasi-convex function.

Let f : I ⊆ ℝ → ℝ be a convex function defined on the interval I of real numbers and a, bI with a < b. The inequality

f(a+b2)1b-aabf(x)dxf(a)+f(b)2

is well known in the literature as Hermite-Hadamard’s inequality [5].

The most well-known inequalities related to the integral mean of a convex function f are the Hermite Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard-Fejér inequalities.

In [4], Fejér established the following Fejér inequality which is the weighted generalization of Hermite-Hadamard inequality (1.1):

Theorem 1.1

Let f : [a, b]→ ℝ be a convex function. Then the inequality

f(a+b2)abg(x)dxabf(x)g(x)dxf(a)+f(b)2abg(x)dx

holds, where g : [a, b]→ ℝ is nonnegative, integrable and symmetric to a + b/2.

For some results which generalize, improve and extend the inequalities (1.1) and (1.2) see [1, 6, 7, 16, 18].

We recall the following inequality and special functions which are known as Beta and hypergeometric function respectively:

β(x,y)=Γ(x)Γ(y)Γ(x+y)=01tx-1(1-t)y-1dt,x,y>0,F21(a,b;c;z)=1β(b,c-b)01tb-1(1-t)c-b-1(1-zt)-adt,c>b>0,z<1

(see [13]).

Lemma 1.2.([15, 20])

For 0 < α ≤ 1 and 0 ≤ a < b we have |aαbα| ≤ (ba)α.

The following definitions and mathematical preliminaries of fractional calculus theory are used further in this paper.

Definition 1.3.([13])

Let fL[a, b]. The Riemann-Liouville integrals Ja+αf and Jb-αf of order α > 0 with a ≥ 0 are defined by

Ja+αf(x)=1Γ(α)ax(x-t)α-1f(t)dt,x>a

and

Jb-αf(x)=1Γ(α)xb(t-x)α-1f(t)dt,x<b

respectively, where Γ(α) is the Gamma function defined by Γ(α)=0e-ttα-1dt and Ja+0f(x)=Jb-0f(x)=f(x).

Because of the wide application of Hermite-Hadamard type inequalities and fractional integrals, many researchers extend their studies to Hermite-Hadamard type inequalities involving fractional integrals not limited to integer integrals. Recently, more and more Hermite-Hadamard inequalities involving fractional integrals have been obtained for different classes of functions; see [3, 8, 9, 17, 19, 20].

Definition 1.4.([21])

A function f : I ⊆ (0,∞) → [0,∞) is said to be harmonically quasi-convex, if

f(xytx+(1-t)y)sup {f(x),f(y)}

for all x, yI and t ∈ [0, 1].

In [11], İşcan defined the so-called harmonically convex functions and established following Hermite-Hadamard type inequality for them as follows:

Definition 1.5

Let I ⊂ ℝ{0} be a real interval. A function f : I → ℝ is said to be harmonically convex, if

f(xytx+(1-t)y)tf(y)+(1-t)f(x)

for all x, yI and t ∈ [0, 1]. If the inequality in (1.3) is reversed, then f is said to be harmonically concave.

Theorem 1.6.([11])

Let f : I ⊂ ℝ{0} → ℝ be a harmonically convex function and a, bI with a < b. If fL[a, b] then the following inequalities holds:

f(2aba+b)abb-aabf(x)x2dxf(a)+f(b)2.

In [10], İşcan and Wu presented a Hermite-Hadamard type inequality for harmonically convex functions in fractional integral forms as follows:

Theorem 1.7

Let f : I ⊂ (0,∞) → ℝ be a function such that fL[a, b], where a, bI with a < b. If f is a harmonically convex function on [a, b], then the following inequalities for fractional integrals holds:

f(2aba+b)Γ(α+1)2(abb-a)α{J1/a-α(fh)(1/b)+J1/b+α(fh)(1/a)}f(a)+f(b)2

with α > 0 and h(x) = 1/x.

In [14] Latif et al. gave the following definition:

Definition 1.8

A function g : [a, b] ⊆ ℝ {0} → ℝ is said to be harmonically symmetric with respect to 2ab/a + b, if

g(x)=g(11a+1b-1x)

holds for all x ∈ [a, b].

In [2] Chan and Wu presented a Hermite-Hadamard-Fejér inequality for harmonically convex functions as follows:

Theorem 1.9

Let f : I ⊆ ℝ{0} → ℝ be a harmonically convex function and a, bI with a < b. If fL[a, b] and g : [a, b] ⊆ ℝ{0} → ℝ is nonnegative, integrable and harmonically symmetric with respect to 2ab/a + b, then

f(2aba+b)abg(x)x2dxabf(x)g(x)x2dxf(a)+f(b)2abg(x)x2dx.

In [12] İşcan and Kunt presented a Hermite–Hadamard-Fejér type inequality for harmonically convex functions in fractional integral forms and established following identity as follows:

Theorem 1.10

Let f : [a, b]→ ℝ be a harmonically convex function with a < b and fL[a, b]. If g : [a, b]→ ℝ is nonnegative, integrable and harmonically symmetric with respect to 2ab/a+b, then the following inequalities for fractional integrals holds:

f(2aba+b)[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)][J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]

with α > 0 and h(x) = 1/x, x[1b,1a].

Lemma 1.11.([12])

Let f : I ⊂ (0,∞) → ℝ be a differentiable function on Isuch that f′L[a, b], where a, bI and a < b. If g : [a, b]→ ℝ is integrable and harmonically symmetric with respect to 2ab/a + b, then the following equality for fractional integrals holds:

f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]-[J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]=1Γ(α)1b1a[1bt(1a-s)α-1(gh)(s)ds-t1a(s-1b)α-1(gh)(s)ds](fh)(t)dt

with α > 0 and h(x) = 1/x, x[1b,1a].

In this paper, we give some new inequalities connected with the right-hand side of Hermite-Hadamard-Fejér type integral inequality for harmonically quasi-convex function in fractional integrals.

Throughout this section, we write g=supt[a,b]g(t), for the continuous function g : [a, b]→ ℝ.

Theorem 2.1

Let f : I ⊂ (0,∞) → ℝ be a differentiable function on Isuch that f′L[a, b], where a, bI and a < b. If |f′| is harmonically quasi-convex on [a, b], g : [a, b]→ ℝ is continuous and harmonically symmetric with respect to 2ab/a + b , then the following inequality for fractional integrals holds:

|f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]-[J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]|gab(b-a)Γ(α+1)(b-aab)αC1(α)sup {f(a),f(b)}

where

C1(α)=[b-2α+1F21(2,1;α+2;1-ab)-b-2α+1F21(2,α+1;α+2;1-ab)+4(a+b)-2α+1F21(2,α+1;α+2;b-ab+a)]

with 0 < α ≤ 1 and h(x) = 1/x, x[1b,1a].

Proof

From Lemma 1.11 we have

|f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]-[J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]|1Γ(α)1b1a|1bt(1a-s)α-1(gh)(s)ds-t1a(s-1b)α-1(gh)(s)ds|(fh)(t)dt.

Since g is harmonically symmetric with respect to 2ab/a + b, using Definition 1.8 we have g(1x)=g(1(1a)+(1b)-x) for all x[1b,1a].

|1bt(1a-s)α-1(gh)(s)ds-t1a(s-1b)α-1(gh)(s)ds|=|1a+1b-t1a(s-1b)α-1(gh)(s)ds+1at(s-1b)α-1(gh)(s)ds|=|1a+1b-tt(s-1b)α-1(gh)(s)ds|{t1a+1b-t|(s-1b)α-1(gh)(s)|ds,t[1b,a+b2ab]1a+1b-tt|(s-1b)α-1(gh)(s)|ds,t[a+b2ab,1a].

If we use (2.3) in (2.2), we have

|f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]-[J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]|1Γ(α)[1ba+b2ab(t1a+1b-t|(s-1b)α-1(gh)(s)|ds)(fh)(t)dt+a+b2ab1a(1a+1b-tt|(s-1b)α-1(gh)(s)|ds)(fh)(t)dt]gΓ(α)[1ba+b2ab(t1a+1b-t(s-1b)α-1ds)(fh)(t)dt+a+b2ab1a(1a+1b-tt(s-1b)α-1ds)(fh)(t)dt]gΓ(α)[1ba+b2ab(t1a+1b-t(s-1b)α-1ds)1t2f(1t)dt+a+b2ab1a(1a+1b-tt(s-1b)α-1ds)1t2f(1t)dt].

Setting t=ub+(1-u)aab and dt=(b-aab)du gives

|f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]-[J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]|gab(b-a)Γ(α+1)(b-aab)α[012(1-u)α-uα(ub+(1-u)a)2|f(abub+(1-u)a)|du+121uα-(1-u)α(ub+(1-u)a)2|f(abub+(1-u)a)|du].

Since |f′| is harmonically quasi-convex on [a, b], we have

|f(abub+(1-u)a)|sup {f(a),f(b)}.

If we use (2.5) in (2.4), we have

|f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]-[J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]|gab(b-a)Γ(α+1)(b-aab)αsup {f(a),f(b)}×[012(1-u)α-uα(ub+(1-u)a)2du+121uα-(1-u)α(ub+(1-u)a)2du].

Using Lemma 1.2, we have

012(1-u)α-uα(ub+(1-u)a)2du+121uα-(1-u)α(ub+(1-u)a)2du=01uα-(1-u)α(ub+(1-u)a)2du+2012(1-u)α-uα(ub+(1-u)a)2du=01uα(ub+(1-u)a)2du-01(1-u)α(ub+(1-u)a)2du+2012(1-u)α-uα(ub+(1-u)a)2du01uα(ub+(1-u)a)2du-01(1-u)α(ub+(1-u)a)2du+2012(1-2u)α(ub+(1-u)a)2du.

Calculating the following integrals, we have

01uα(ub+(1-u)a)2du-01(1-u)α(ub+(1-u)a)2du+2012(1-2u)α(ub+(1-u)a)2du=01(1-u)α(ua+(1-u)b)2du-01uα(ua+(1-u)b)2du+01(1-u)α(u2b+(1-u2)a)2du=01(1-u)αb-2(1-u(1-ab))-2du-01uαb-2(1-u(1-ab))-2du+01vα(a+b2)-2(1-v(b-ab+a))-2dv=[b-2α+1F21(2,1;α+2;1-ab)-b-2α+1F21(2,α+1;α+2;1-ab)+4(a+b)-2α+1F21(2,α+1;α+2;b-ab+a)]=C1(α).

If we use (2.7) and (2.8) in (2.6), we have (2.1). This completes the proof.

Corollary 2.2

In Theorem 2.1:

  • If we take α = 1 we have the following Hermite-Hadamard-Fejér inequality for harmonically quasi-convex functions which is related to the right-hand side of (1.6):|f(a)+f(b)2abg(x)x2dx-abf(x)g(x)x2dx|g(b-a)22C1(1)sup {f(a),f(b)},

  • If we take g (x) = 1 we have following Hermite-Hadamard type inequality for harmonically quasi-convex functions in fractional integral forms which is related to the right-hand side of (1.5):|f(a)+f(b)2-Γ(α+1)2(abb-a)α{J1/a-α(fh)(1/b)+J1/b+α(fh)(1/a)}|ab(b-a)2C1(α)sup {f(a),f(b)},

  • If we take α = 1 and g (x) = 1 we have the following Hermite-Hadamard type inequality for harmonically quasi-convex functions which is related to the right-hand side of (1.4):|f(a)+f(b)2-abb-aabf(x)x2dx|ab(b-a)2C1(1)sup {f(a),f(b)}.

Theorem 2.3

Let f : I ⊂ (0,∞) → ℝ be a differentiable function on Isuch that f′L[a, b], where a, bI and a < b. If |f′|q, q ≥ 1, is harmonically quasi-convex on [a, b], g : [a, b] → ℝ is continuous and harmonically symmetric with respect to 2ab/a + b, then the following inequality for fractional integrals holds:

|f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]-[J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]|gab(b-a)Γ(α+1)(b-aab)αC2(α)[sup {f(a)q,f(b)q}]1q

where

C2(α)=b-2α+1F21(2,1;α+2;b-ab+a)-b-2α+1F21(2,α+1;α+2;b-ab+a)+4(a+b)-2(α+1)F21(2,α+1;α+2;b-ab+a),

with 0 < α ≤ 1 and h(x) = 1/x, x[1b,1a].

Proof

Using (2.4), power mean inequality and the harmonically quasi-convexity of |f′|q, it follows that

|f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)][J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]|gab(b-a)Γ(α+1)(b-aab)α[012(1-u)α-uα(ub+(1-u)a)2|f(abub+(1-u)a)|du+121uα-(1-u)α(ub+(1-u)a)2|f(abub+(1-u)a)|du]gab(b-a)Γ(α+1)(b-aab)α[(012(1-u)α-uα(ub+(1-u)a)2du)1-1q×(012(1-u)α-uα(ub+(1-u)a)2|f(abub+(1-u)a)|qdu)1q+(121uα-(1-u)α(ub+(1-u)a)2du)1-1q×(121uα-(1-u)α(ub+(1-u)a)2f(abub+(1-u)a)qdu)1q]gab(b-a)Γ(α+1)(b-aab)α×[(012(1-u)α-uα(ub+(1-u)a)2du)1-1q×(012(1-u)α-uα(ub+(1-u)a)2sup {f(a)q,f(b)q}du)1q+(121uα-(1-u)α(ub+(1-u)a)2du)1-1q×(121uα-(1-u)α(ub+(1-u)a)2sup {f(a)q,f(b)q}du)1q]gab(b-a)Γ(α+1)(b-aab)α[sup {f(a)q,f(b)q}]1q×[012(1-u)α-uα(ub+(1-u)a)2du+121uα-(1-u)α(ub+(1-u)a)2du].

Using Lemma 1.2, we have

012(1-u)α-uα(ub+(1-u)a)2du+121uα-(1-u)α(ub+(1-u)a)2du=01uα-(1-u)α(ub+(1-u)a)2du+2012(1-u)α-uα(ub+(1-u)a)2du=01uα(ub+(1-u)a)2du-01(1-u)α(ub+(1-u)a)2du+2012(1-u)α-uα(ub+(1-u)a)2du01uα(ub+(1-u)a)2du-01(1-u)α(ub+(1-u)a)2du+2012(1-2u)α(ub+(1-u)a)2du.

For the appearing integrals, we have

01uα(ub+(1-u)a)2du-01(1-u)α(ub+(1-u)a)2du+2012(1-2u)α(ub+(1-u)a)2du=01(1-u)αb-2(1-u(1-ab))-2du-01uαb-2(1-u(1-ab))-2du+01(1-u)α(u2b+(1-u2)a)2du=01(1-u)αb-2(1-u(1-ab))-2du-01uαb-2(1-u(1-ab))-2du+01vα(a+b2)-2(1-v(b-ab+a))-2dv=b-2α+1F21(2,1;α+2;b-ab+a)-b-2α+1F21(2,α+1;α+2;b-ab+a)+4(a+b)-2(a+1)F21(2,α+1;α+2;b-ab+a)=C2(α).

If we use (2.11) and (2.12) in (2.10), we have (2.9). This completes the proof.

Corollary 2.4

In Theorem 2.3:

  • If we take α = 1 we have the following Hermite-Hadamard-Fejér inequality for harmonically quasi-convex functions which is related to the right-hand side of (1.6):|f(a)+f(b)2abg(x)x2dx-abf(x)g(x)x2dx|g(b-a)22C2(1)[sup {f(a)q,f(b)q}]1q,

  • If we take g (x) = 1 we have following Hermite-Hadamard type inequality for harmonically quasi-convex functions in fractional integral forms which is related to the right-hand side of (1.5):|f(a)+f(b)2-Γ(α+1)2(abb-a)α{J1/a-α(fh)(1/b)+J1/b+α(fh)(1/a)}|ab(b-a)2C2(α)[sup {f(a)q,f(b)q}]1q,

  • If we take α = 1 and g (x) = 1 we have the following Hermite-Hadamard type inequality for harmonically quasi-convex functions which is related to the right-hand side of (1.4):|f(a)+f(b)2-abb-aabf(x)x2dx|ab(b-a)2C2(1)[sup {f(a)q,f(b)q}]1q.

We can state another inequality for q > 1 as follows:

Theorem 2.5

Let f : I ⊂ (0,∞) → ℝ be a differentiable function on Isuch that f′L[a, b], where a, bI and a < b. If |f′|q , q > 1, is harmonically quasi-convex on [a, b], g : [a, b] → ℝ is continuous and harmonically symmetric with respect to 2ab/a + b , then the following inequality for fractional integrals holds:

|f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]-[J1/b+α(fgh)(1/a)+J1/aα-(fgh)(1/b)]|gab(b-a)21qΓ(α+1)(b-aab)α×(sup {f(a)q,f(b)q})1q[C31p(α)+C41p(α)]

where

C3(α)=(a+b2)-2p12(αp+1)F21(2p,αp+1;αp+2;b-ab+a),C4(α)=b-2p12(αp+1)F21(2p,1;αp+2;12(1-ab)),

with 0 < α ≤ 1, h(x) = 1/x, x[1b,1a] and 1/p + 1/q = 1.

Proof

Using (2.4), Hölder’s inequality and the harmonically quasi-convexity of |f′|q, it follows that

|f(a)+f(b)2[J1/b+α(gh)(1/a)+J1/a-α(gh)(1/b)]-[J1/b+α(fgh)(1/a)+J1/a-α(fgh)(1/b)]|gab(b-a)Γ(α+1)(b-aab)α[012(1-u)α-uα(ub+(1-u)a)2|f(abub+(1-u)a)|du+121uα-(1-u)α(ub+(1-u)a)2|f(abub+(1-u)a)|du]gab(b-a)Γ(α+1)(b-aab)α[(012[(1-u)α-uα]p(ub+(1-u)a)2pdu)1p×(012|f(abub+(1-u)a)|qdu)1q+(121[uα-(1-u)α]p(ub+(1-u)a)2pdu)1p×(121|f(abub+(1-u)a)|qdu)1q]gab(b-a)Γ(α+1)(b-aab)α×[(012[(1-u)α-uα]p(ub+(1-u)a)2pdu)1p(012sup {f(a)q,f(b)q}du)1q+(121[uα-(1-u)α]p(ub+(1-u)a)2pdu)1p(121sup {f(a)q,f(b)q}du)1q]gab(b-a)21qΓ(α+1)(b-aab)α(sup {f(a)q,f(b)q})1q×[(012[(1-u)α-uα]p(ub+(1-u)a)2pdu)1p+(121[uα-(1-u)α]p(ub+(1-u)a)2pdu)1p].

Using Lemma 1.2, we have

012[(1-u)α-uα]p(ub+(1-u)a)2pdu012(1-2u)αp(ub+(1-u)a)2pdu

and

121[uα-(1-u)α]p(ub+(1-u)a)2pdu121(2u-1)αp(ub+(1-u)a)2pdu.

For the appearing integrals, we have

012(1-2u)αp(ub+(1-u)a)2pdu=1201(1-u)αp(u2b+(1-u2)a)2pdu=1201vαp(a+b2)-2p[1-v(b-ab+a)]-2pdv=(a+b2)-2p12(αp+1)F21(2p,αp+1;αp+2;b-ab+a)=C3(α)

and

121(2u-1)αp(ub+(1-u)a)2pdu=012(1-2u)αp(ua+(1-u)b)2pdu=1201(1-v)αp(v2a+(1-v2)b)2pdv=1201(1-v)αpb-2p(1-v2(1-ab))-2pdv=b-2p12(αp+1)F21(2p,1;αp+2;12(1-ab))=C4(α).

If we use (2.15), (2.16), (2.17) and (2.18) in (2.14), we have (2.13). This completes the proof.

Corollary 2.6

In Theorem 2.5:

  • If we take α = 1 we have the following Hermite-Hadamard-Fejér inequality for harmonically quasi-convex functions which is related to the right-hand side of (1.6):|f(a)+f(b)2abg(x)x2dx-abf(x)g(x)x2dx|g(b-a)221q+1(sup {f(a)q,f(b)q})1q[C31p(1)+C41p(1)],

  • If we take g (x) = 1 we have following Hermite-Hadamard type inequality for harmonically quasi-convex functions in fractional integral forms which is related to the right-hand side of (1.5):|f(a)+f(b)2-Γ(α+1)2(abb-a)α{J1/a-α(fh)(1/b)+J1/b+α(fh)(1/a)}|ab(b-a)21q+1(sup {f(a)q,f(b)q})1q[C31p(α)+C41p(α)],

  • If we take α = 1 and g (x) = 1 we have the following Hermite-Hadamard type inequality for harmonically quasi-convex functions which is related to the right-hand side of (1.4):|f(a)+f(b)2-abb-aabf(x)x2dx|ab(b-a)21q+1(sup {f(a)q,f(b)q})1q[C31p(1)+C41p(1)].

The authors are very grateful to the referee for helpful comments and valuable suggestions.

  1. Bombardelli, M, and Varošanec, S (2009). Properties of h-convex functions related to the Hermite Hadamard Fejér inequalities. Comp Math with Appl. 58, 1869-1877.
    CrossRef
  2. Chen, F, and Wu, S (2014). Fejér and Hermite-Hadamard type inqequalities for harmonically convex functions. J Appl Math.
    CrossRef
  3. Dahmani, Z (2010). On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann Funct Anal. 1, 51-58.
    CrossRef
  4. Fejér, L (1906). Uber die Fourierreihen. II, Math Naturwise Anz Ungar Akad, Wiss. 24, 369-390.
  5. Hadamard, J (1893). Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J Math Pures Appl. 58, 171-215.
  6. İşcan, İ (2013). New estimates on generalization of some integral inequalities for s-convex functions and their applications. Int J Pure Appl Math. 86, 727-746.
    CrossRef
  7. İşcan, İ (2014). Some new general integral inequalities for h-convex and h-concave functions. Adv Pure Appl Math. 5, 21-29.
    CrossRef
  8. İşcan, İ (2013). Generalization of different type integral inequalities for s-convex functions via fractional integrals. Appl Anal.
    CrossRef
  9. İşcan, İ (2014). On generalization of different type integral inequalities for s-convex functions via fractional integrals. Math Sci Appl E-Not. 2, 55-67.
  10. İşcan, İ, and Wu, S (2014). Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl Math Comput. 238, 237-244.
  11. İşcan, İ (2014). Hermite-Hadamard type inequalities for harmonically convex functions. Hacet J Math Stat. 43, 935-942.
  12. İşcan, İ, and Kunt, M (2015). Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. RGMIA. 18, 16.
  13. Kilbas, AA, Srivastava, HM, and Trujillo, JJ (2006). Theory and applications of fractional differential equations. Amsterdam: Elsevier
  14. Latif, MA, Dragomir, SS, and Momoniat, E (2015). Some Fejér type inequalities for harmonically-convex functions with applications to special means. RGMIA. 18, 17.
  15. Prudnikov, AP, Brychkov, YA, and Marichev, OJ (1981). Integral and series, Elementary Functions. Moscow: Nauka
  16. Sarıkaya, MZ (2012). On new Hermite Hadamard Fejér type integral inequalities. Stud Univ Babeş-Bolyai Math. 57, 377-386.
  17. Sarıkaya, MZ, Set, E, Yaldız, H, and Başak, N (2013). Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math Comput Mod. 57, 2403-2407.
    CrossRef
  18. Tseng, K-L, Yang, G-S, and Hsu, K-C (2011). Some inequalities for differentiable mappings and applications to Fejér inequality and weighted trapezoidal formula. Taiwanese J Math. 15, 1737-1747.
  19. Wang, J, Li, X, Fečkan, M, and Zhou, Y (2012). Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl Anal. 92, 2241-2253.
    CrossRef
  20. Wang, J, Zhu, C, and Zhou, Y (2013). New generalized Hermite-Hadamard type inequalities and applications to special means. J Inequal Appl. 2013, 15.
    CrossRef
  21. Zhang, TY, Ji, AP, and Qi, F (2013). Integral inequalities of Hermite-Hadamard type for harmonically quasi-convexmfunctions. Proc Jangjeon Math Soc. 16, 399-407.