검색
Article Search

JMB Journal of Microbiolog and Biotechnology

OPEN ACCESS eISSN 0454-8124
pISSN 1225-6951
QR Code

Article

Kyungpook Mathematical Journal 2022; 62(3): 467-484

Published online September 30, 2022

Copyright © Kyungpook Mathematical Journal.

Some Approximation Results by Bivariate Bernstein-Kantorovich Type Operators on a Triangular Domain

Reşat Aslan∗ and Aydin Izgi

Department of Mathematics, Faculty of Sciences and Arts, Harran University, 63100 Şanlıurfa, Turkey
e-mail : resat63@hotmail.com and a_izgi@harran.edu.tr

Received: February 3, 2021; Revised: January 17, 2022; Accepted: January 24, 2022

In this work, we define bivariate Bernstein-Kantorovich type operators on a triangular domain and obtain some approximation results for these operators. We start off by computing some moment estimates and prove a Korovkin type convergence theorem. Then, we estimate the rate of convergence using the partial and complete modulus of continuity, and derive a Voronovskaya-type asymptotic theorem. Further, we calculate the order of approximation with regard to the Peetre's K-functional and a Lipschitz type class. In addition, we construct the associated GBS type operators and compute the rate of approximation using the mixed modulus of continuity and class of the Lipschitz of Bögel continuous functions for these operators. Finally, we use the two operators to approximate example functions in order to compare their convergence.

Keywords: Bernstein-Kantorovich operators, Modulus of continuity, Voronovskaya-type asymptotic theorem, Peetre’s K-functional, GBS type operators

In [28], Weierstrass showed in his famous approximation theorem that any continuous function f on a compact set can be approximated uniformly by a polynomial sequence pn. Since the proof of Weierstrass's approximation theorem is very long and complex, many authors have subsequently worked on the proof of this theorem, but the most elegant one was presented by Bernstein [6]. In 1930, Kantorovich [18] introduced approximations for Lebesgue integrable functions. In [19], Kingsley introduced and studied the Bernstein polynomials in the bivariate case of the class C(k). Stancu [26] obtained a new method for dealing with Bernstein operators for two variables. Very recently, Pop and Fărc{a}ş [22] investigated several approximation properties of bivariate Kantorovich type operators. Kajla and Goyal [17] obtained direct results for the modified Bernstein–Kantorovich operators and considered the bivariate case of these operators. Moreover, Deshwal et al. [11] proposed and studied bivariate operators of Bernstein-Kantorovich type on a triangle. In [16], Kajla constructed generalized Bernstein-Kantorovich–type operators on a triangle and presented Voronovskaja-type and Grüss Voronovskaja-type asymptotic theorems; he estimated of the rate of approximation using Peetre's K-functional. In 2017, Goyal et al. [15] considered a bivariate extension of the Bernstein-Durrmeyer type operators on a triangle domain. Başcanbaz-Tunca et al. [6] considered bivariate Cheney-Sharma operators which preserve the Lipschitz condition. Agrawal et al. [1] discussed the deferred weighted A-statistical approximation and investigated the convergence estimates for the functions in a Bögel space by Bernstein-Kantorovich type operators on a triangle. Local and global approximation results in terms of modulus of continuity, Peetre’s K-functional, second-order modulus of smoothness and statistical convergence for certain Bernstein-Kantorovich, bivariate Bernstein-Kantorovich and Bernstein-Stancu operators are studied in very recent papers [2, 20, 25].

Now, let :=(x,y):1x,y1,x+y0 be a triangular domain and let C() be the set of all real functions h that are continuous on ∇ and bounded on ×. The norm on C() is

h=sup(x,y)h(x,y).

Inspired by the works mentioned above, we construct bivariate Bernstein-Kantorovich type operators for (x,y) and h: as follows:

Rn(h;x,y)= k=0 n l=0nk ν n,k,l (x,y) 2kn+11 2k+1n+11 2l n+1 1 2 l+1 n+1 1 h(s,t)dsdt,

where νn,k,l(x,y)=n+122nknkl1+x2k1+y2l11+x21+y2nkl.

The structure of this work is planned as follows. In Section 2, we give some auxiliary results, such as computing moment estimates and proving a Korovkin's type approximation using Volkov's theorem [27]. In Section 3, we investigate the rate of approximation with regard to the partial and complete modulus of continuity and derive a Voronovskaya-type asymptotic theorem. In Section 4, we discuss the rate of convergence in terms of the Peetre's K-functional and Lipschitz type class. In Section 5, we construct the GBS type of newly defined operators and estimate the order of convergence in terms of the mixed modulus of smoothness and the Lipschitz class of Bögel-continuous function. Finally, we give a comparison of the convergence of the newly defined operators and their associated GBS operators with example computations.

Lemma 2.1. Let ru,v:,ru,v(s,t)=sutv. Then, for any (x,y) and 0u,v4, the operators given by (1.1) satisfy the following equalities:

(i) Rn(r0,0;x,y)=1,(ii) Rn(r1,0;x,y)=x11n+1,(iii) Rn(r0,1;x,y)=y11n+1,(iv) Rn(r1,1;x,y)=xy13n+1n+12x+y+1nn+12,(v) Rn(r2,0;x,y)=x213n+1n+12+n+13n+12,(vi) Rn(r0,2;x,y)=y213n+1n+12+n+13n+12,(vii) Rn(r3,0;x,y)=x316n2+n+1n+13+x3n2nn+13,(viii) Rn(r0,3;x,y)=y316n2+n+1n+13+y3n2nn+13,(ix) Rn(r4,0;x,y)=x4110n35n2+10n+1n+14+6x2n3+10n25nn+14+39n236n+15n+14,(x) Rn(r0,4;x,y)=y4110n35n2+10n+1n+14+6y2n3+10n25nn+14+39n236n+15n+14.

Lemma 2.2. Let ku,v:,ku,v=sxutyv. Then, for any (x,y) and 0u,v4, we have the following central moments:

(i) Rn(k0,0;x,y)=1,(ii) Rn(k1,0;x,y)=xn+1,(iii) Rn(k0,1;x,y)=yn+1,(iv) Rn(k1,1;x,y)=xy(1n)n+12x+y+1nn+12,(v) Rn(k2,0;x,y)=x2(1n)+n+13n+12,(vi) Rn(k0,2;x,y)=y2(1n)+n+13n+12,(vii) Rn(k4,0;x,y)=x43n220n+1n+14+2x233n28n+1n+14+39n236n2+15n+14,(viii) Rn(k0,4;x,y)=y43n220n+1n+14+2y233n28n+1n+14+39n236n2+15n+14.

Lemma 2.3. For the operators given by (1.1), we have the following relations:

(i)limnnRn(sx;x,y)=x,(ii)limnnRn(ty;x,y)=y,(iii)limnnRn(sx2;x,y)=1x2,(iv)limnnRn(ty2;x,y)=1y2,(v)limnnRn(sxty;x,y)=xy+x+y+1,(vi)limnn2Rn(sx4;x,y)=3x4+22x2+13,(vii)limnn2Rn(ty4;x,y)=3y4+22y2+13.

Theorem 2.4. If h(x,y)C(), then operators given by (1.1) convergence uniformly to h on ∇ asn.

Proof. As a consequence of [27], we have to show operators given by (1.1) verifies that:

(i)limnRn(r0,0)1C()0,(ii)limnRn(r1,0)xC()0,(iii)limnRn(r0,1)yC()0,(iv)limnRn(r2,0+r0,2)(x2+y2)C()0.

From Lemma 2.1. (i), it is obvious that

(i)limnRn(r0,0)1C()0.

In view of Lemma 2.1. (ii)-(iii), we get

(ii)limnRn(r1,0)xC()=limnmax1x1Rn(r1,0)x=limnmax1x1xn+1limn1n+10.

Similarly, we obtain

(iii)limnRn(r0,1)yC()0.

Also, from Lemma 2.1. (iv), we have

(iv)limn Rn(r 2,0+r 0,2)(x2+y2)C()=limnmax1x,y1Rn(r2,0+r0,2)(x2+y2)=limnmax1x,y1(x2+y2)13n+1n+1 2 +2n+ 23n+1 2 (x2+y2)limn8n+10,

which gives the proof of the Theorem 2.4.

Lemma 2.1. Let ru,v:,ru,v(s,t)=sutv. Then, for any (x,y) and 0u,v4, the operators given by (1.1) satisfy the following equalities:

(i) Rn(r0,0;x,y)=1,(ii) Rn(r1,0;x,y)=x11n+1,(iii) Rn(r0,1;x,y)=y11n+1,(iv) Rn(r1,1;x,y)=xy13n+1n+12x+y+1nn+12,(v) Rn(r2,0;x,y)=x213n+1n+12+n+13n+12,(vi) Rn(r0,2;x,y)=y213n+1n+12+n+13n+12,(vii) Rn(r3,0;x,y)=x316n2+n+1n+13+x3n2nn+13,(viii) Rn(r0,3;x,y)=y316n2+n+1n+13+y3n2nn+13,(ix) Rn(r4,0;x,y)=x4110n35n2+10n+1n+14+6x2n3+10n25nn+14+39n236n+15n+14,(x) Rn(r0,4;x,y)=y4110n35n2+10n+1n+14+6y2n3+10n25nn+14+39n236n+15n+14.

Lemma 2.2. Let ku,v:,ku,v=sxutyv. Then, for any (x,y) and 0u,v4, we have the following central moments:

(i) Rn(k0,0;x,y)=1,(ii) Rn(k1,0;x,y)=xn+1,(iii) Rn(k0,1;x,y)=yn+1,(iv) Rn(k1,1;x,y)=xy(1n)n+12x+y+1nn+12,(v) Rn(k2,0;x,y)=x2(1n)+n+13n+12,(vi) Rn(k0,2;x,y)=y2(1n)+n+13n+12,(vii) Rn(k4,0;x,y)=x43n220n+1n+14+2x233n28n+1n+14+39n236n2+15n+14,(viii) Rn(k0,4;x,y)=y43n220n+1n+14+2y233n28n+1n+14+39n236n2+15n+14.

Lemma 2.3. For the operators given by (1.1), we have the following relations:

(i)limnnRn(sx;x,y)=x,(ii)limnnRn(ty;x,y)=y,(iii)limnnRn(sx2;x,y)=1x2,(iv)limnnRn(ty2;x,y)=1y2,(v)limnnRn(sxty;x,y)=xy+x+y+1,(vi)limnn2Rn(sx4;x,y)=3x4+22x2+13,(vii)limnn2Rn(ty4;x,y)=3y4+22y2+13.

Theorem 2.4. If h(x,y)C(), then operators given by (1.1) convergence uniformly to h on ∇ asn.

Proof. As a consequence of [27], we have to show operators given by (1.1) verifies that:

(i)limnRn(r0,0)1C()0,(ii)limnRn(r1,0)xC()0,(iii)limnRn(r0,1)yC()0,(iv)limnRn(r2,0+r0,2)(x2+y2)C()0.

From Lemma 2.1. (i), it is obvious that

(i)limnRn(r0,0)1C()0.

In view of Lemma 2.1. (ii)-(iii), we get

(ii)limnRn(r1,0)xC()=limnmax1x1Rn(r1,0)x=limnmax1x1xn+1limn1n+10.

Similarly, we obtain

(iii)limnRn(r0,1)yC()0.

Also, from Lemma 2.1. (iv), we have

(iv)limn Rn(r 2,0+r 0,2)(x2+y2)C()=limnmax1x,y1Rn(r2,0+r0,2)(x2+y2)=limnmax1x,y1(x2+y2)13n+1n+1 2 +2n+ 23n+1 2 (x2+y2)limn8n+10,

which gives the proof of the Theorem 2.4.

In this section, we will estimate the rate of convergence in terms of Peetre's K-functional and a Lipschitz-type function. The norm on C2() and Peetre's K-functional are given, respectively as follows:

hC2()=hC()+2j=1 jhxj C()+ jhyj C(),
K2(h,ζ)=infhgC()+ζgC2():gC2()(ζ>0).

Also, for an absolute constant D>0 such that

K2(h,ζ)Dω2(h,ζ),

where ω2(h,ζ) denote the second order of modulus of continuity. (See: [3, 29]).

Further, for hC(), (x,y),(t,s) and β,γ0,1, the Lipschitz-type class for bivariate case is assigned as

Lipα(β,γ)=hC():h(t,s)h(x,y);x,yα txβsyγ.

Theorem 4.1. Let hLipα(β,γ). Then, for each (x,y) the following inequality verifies that

Rn(h;x,y)h(x,y)α Πn1(x)β2Πn2(y)γ2

where Πn1(x)=Rn(k2,0;x,y) and Πn2(y)=Rn(k0,2;x,y).

Proof. In view of (4.2) and using the definition of (1.1), then

Rn(h;x,y)h(x,y)Rnh(t,s)h(x,y);x,yαRntxβsyγ;x,y=αRn(txβ;x,y)Rnsyγ;x,y.

Utilizing the Hölder's inequality with p1,q1=2β,22β and p2,q2=2γ,22γ, we

get

Rn(h;x,y)h(x,y)αRn(tx)2;x,yβ2Rnr0,0;x,y2β2×Rn(sy)2;x,yγ2Rnr0,0;x,y2γ2.

From Lemma 2.1. (i), which leads to the required result as

Rn(h;x,y)h(x,y)α Πn1(x)β2Πn2(y)γ2.

Theorem 4.2. Let hC1(). Then, we obtain the following inequality

Rn(h;x,y)h(x,y)hxΠn1(x)+hyΠn2(y)

where Πn1(x) and Πn2(y) are same as in Theorem 4.1..

Proof. For a given fixed point (x,y), we may write

h(u,v)h(x,y)=xuht(t,v)dt+yvhs(x,s)ds.

Operating Rn(.;x,y) to the both sides of above equality, then

Rn(h;x,y)h(x,y)Rn(xuht(t,v)dt;x,y)+Rn(yvhs(x,s)ds;x,y).

Since

xuht(t,v)dthxuxandyvhs(x,s)dshyv-y, 

hence,

Rn(h;x,y)h(x,y)hxRn(ux;x,y)+hyRn(vy;x,y).

Applying the Cauchy-Schwarz inequality to the above inequality, one has

Rn(h;x,y)h(x,y)hxRn((ux)2;x,y)12Rn(r0,0;x,y)12+hyRn((vy)2;x,y)12Rn(r0,0;x,y)12hxΠn1(x)+hyΠn2(y),

which gives the proof of Theorem 4.2.

Theorem 4.3. Let gC(). Then, for the operators defined by (1.1) we have the following inequality

|Rn(g;x,y)g(x,y)|Nω2(g;An (x,y)2+min{1,An}gC()              +ϖ(g;χn(x,y)),

where χn(x,y)=x2+y2n+1,An(x,y)=Πn1 (x)+Πn2 (y)+χn2(x,y) and N>0 is a constant.

Proof. By first, we define the following auxiliary operators

Rn(g;x,y)=Rn(g;x,y)g(xnn+1,ynn+1)+gx,y.

From Lemma 2.1., it is clear that

Rn((sx);x,y)=0Rn((ty);x,y)=0.

For hC2(), (s,t), applying Taylor's formula, then

h(s,t)h(x,y)=h(s,y)h(x,y)+h(s,t)h(s,y)=h(x,y)x(sx)+sx(su)2h(u,y)2udu+h(x,y)y(ty)+ty(tv)2h(x,v)2vdv.

Operating Rn(.;x,y) to (4.4), hence

Rn(h;x,y)h(x,y)=Rnsx(su)2h(u,y)2udu;x,y+Rnty(tv)2h(x,v)2vdv;x,y=Rnsx(su)2h(u,y)2udu;x,yxnn+1xxnn+1u2h(u,y)2udu+Rnty(tv)2h(x,v)2vdv;x,yynn+1yynn+1v2h(x,v)2vdv.

Moreover,

Rn(h;x,y)h(x,y)Rnsxsu2h(u,y)2udu;x,y+xnn+1xxnn+1u2h(u,y)2udu+Rntytv2h(x,v)2vdv;x,y+ynn+1yynn+1v2h(x,v)2vdvRn((sx)2;x,y)+(xnn+1x)2+Rn((ty)2;x,y)+(ynn+1y)2h C2().

Choosing χn(x,y)=x2+y2n+1,An(x,y)=Πn1 (x)+Πn2 (y)+χn2(x,y), we get

Rn(h;x,y)h(x,y)An(x,y)hC2().

Taking Lemma 2.2. into account, thus

Rn(g;x,y)Rn(g;x,y)+g(xnn+1,ynn+1)+g(x,y)3gC().

From (4.5) and (4.6), we obtain

Rn(g;x,y)g(x,y)Rn(gh;x,y)+Rn(h;x,y)h(x,y)+h(x,y)g(x,y+g(xnn+1,ynn+1)g(x,y)4gh+Rn(h;x,y)h(x,y)+g(xnn+1,ynn+1)g(x,y)4gh+An(x,y)hC2()+ϖ(g;χn(x,y)).

Taking the infimum over all hC2() on the right hand side of (4.7), we arrive

Rn(g;x,y)g(x,y)4K2(g;An(x,y)4)+ϖ(g;χn(x,y)).

Applying (4.1) to the above inequality, it gives the required result as

Rn(g;x,y)g(x,y)Nω2(g;An(x,y)2+min{1,An}gC()              +ϖ(g;χn(x,y)).

The concept of the B-continuous and B-differentiable functions were firstly used by Bögel [8, 9]. Dobrescu and Matei [12] considered the GBS(Generalized Boolean Sum) type of the bivariate Bernstein operators. Next, using of the B-continuous functions by the GBS operators, which is related to a quantitative variant of the Korovkin's type theorem, was firstly improved by Badea []. Pop and Fărcas [21] obtained some approximation of B-continuous and B-differentiable functions by GBS type of Bernstein bivariate operators. We refer also some papers of various linear positive operators, which are related to the GBS operators, ([23, 24, 5, 13]).

Let a function h:. For any (x,y),(t0,s0), the mixed difference of the function h is given by

ϕ(x,y)ht0,s0;x,y=h(x,y)h(x,s0)h(t0,y)+h(t0,s0).

A function h: is called Bögel-continuous (B-continuous) at (t0,s0) , if

lim(x,y)(t0,s0)ϕ(x,y)ht0,s0;x,y=0.

A function h: is called Bögel-differentiable (B-differentiable) at (t0,s0), if

lim(x,y)(t0,s0)ϕ(x,y)ht0,s0;x,y(xt0)(ys0)<.

Note that, by Cb() and Db(), we denote the sets of all B-differentiable and B-continuous functions on ∇, respectively. Also, C()Cb(), see details in [10].

The mixed modulus of smoothness for hCb() is given by

ωmixedh;δ1,δ2:=supϕ(x,y)ht0 ,s0 ;x,y:t0x<δ1,s0y<δ2

where (x,y),(t0,s0) and δ1,δ2+. Also for all λ1,λ20, the following inequality

holds

ωmixedh;λ1δ1,λ2δ21+λ11+λ2ωmixedh;δ1,δ2.

In view of (5.4), one has

ϕ(x,y)ht0,s0;x,yωmixedh;t0x,s0y 1+t0xδ11+s0yδ2ωmixedh;δ1,δ2.

Some details on ωmixed can be found [14].

Let hCb(), the Lipschitz class Lipα(β,γ) with α>0, (t0,s0),(x,y) and β,γ0,1 is defined by

Lipα(β,γ)=hCb():ϕ(x,y)ht0 ,s0 ;x,yαt0 -xβs0 -yγ.

Now, for hCb() and (t0,s0),(x,y), we define the associated GBS type of operators (1.1) as follows:

Pn(h;x,y)= k=0 n l=0nk ν n,k,l (x,y) 2kn+11 2k+1n+11 2l n+1 1 2 l+1 n+1 1 h(x,s0 )+h(t0 ,y)h(t0 ,s0 )ds0dt0,

where νn,k,l(x,y)=n+122nknkl1+x2k1+y2l11+x21+y2nkl.

Theorem 5.1. For all hCb() and (x,y), the operators given by (5.6) verify that

Pn(h;x,y)h(x,y)4 ωmixedh;2n+1,2n+1.

Proof. From (5.1), it is clear

h(x,y)ϕ(x,y)ht0,s0;x,y=h(x,s0)+h(t0,y)h(t0,s0).

Operating Rn(.;x,y) and using the definition of (5.6)

Pn(h;x,y)h(x,y)=Rn(ϕ(x,y)ht0,s0;x,y;x,y).

Utilizing the Cauchy-Schwarz inequality to the above equation and in view of (5.5), thus

|Pn(h;x,y)h(x,y)|Rn(ϕ(x,y)ht0,s0;x,y;x,y)Rn(r0,0;x,y)+δ11Rn(t0 x)2;x,y+δ21Rn(s0y)2;x,y+1δ1δ2Rn(t0 x)2;x,yRn(s0 y)2;x,yωmixedh;δ1,δ2.

Using Lemma 2.1. (i), Lemma 2.2. (v)-(vi) and (5.3), we get

Pn(h;x,y)h(x,y)1+δ112n+1+δ212n+1+δ11δ212n+12n+1ωmixedh;δ1,δ2.

Taking δ1=δ2=2n+1, hence we get

Pn(h;x,y)h(x,y)4 ωmixedh;2n+1,2n+1.

Theorem 5.2. Let hLipα(β,γ). Then, operators (5.6) satisfy the following inequality:

Pn(h;x,y)h(x,y)α Πn1(x)β2Πn2(y)γ2.

Proof. In view of (4.2) and by (5.6), we get

Pn(h;x,y)h(x,y)Rnϕ(x,y)ht0,s0;x,y;x,yαRnt0xβs0yγ;x,y=αRnt0xβ;x,yRns0yγ;x,y.

Applying the Hölder's inequality with p1,q1=2β,22β, p2,q2=2γ,22γ to the above inequality, thus

Pn(h;x,y)h(x,y)αRn(t0x)2;x,yβ2Rnr0,0;x,y2β2×Rn(s0y)2;x,yγ2Rnr0,0;x,y2γ2.

Considering to Lemma 2.1. (i) and Lemma 2.2. (v)-(vi), then

Pn(h;x,y)h(x,y)α Πn1(x)β2Πn2(y)γ2,

which completes the proof.

In this section, we present graphs (made with Maple) and error estimation tables comparing of the convergence of the operators Rn(h;x,y) and Pn(h;x,y), from (1.1) and (5.6), to some example functions h(x,y).

Example 6.1. In Figure 1, we show the function h(x,y)=x3sin(xy) in blue, and the approximations Rn(h;x,y) from (1.1), for n =5 and 20, in yellow. In Table Table 1, we give the error of the same approximation operators for n = 5, 25 and 125. It is clear from Table 1 that, as the value of n increases, the absolute error between the operators and the function h(x,y) decreases.

Table 1 . Error of approximation operators Rn(h;x,y) to the function h(x,y)=x3sin(xy) for n=5,25,125.

(x,y)n=5n=25n=125
(0.095,-0.095)0.0805650.0100060.001126
(0.05,-0.05)0.0778400.0080230.000554
(0.035,-0.035)0.0772890.0076250.000472
(-0.025,0.025)0.0770270.0074370.000424
(-0.01,-0.01)0.0764140.0071960.000363
(0.015,-0.075)0.0757180.0071790.000389
(-0.03,-0.06)0.0751310.0070400.000364
(-0.04,-0.09)0.0748030.0069330.000361
(-0.02,-0.08)0.0747160.0068940.000333
(-0.01,-0.099)0.0744210.0068300.000325


Figure 1. Approximations Rn(h;x,y) of h(x,y)=x3sin(xy).

Example 6.2. In Figure 2, we show the function h(x,y)=x2sin(yx) in blue; the operator Rn(h;x,y) from (1.1), for n = 5 and 25 is shown in red and its associated GBS operators from (5.6) are shown in green. In addition, in Table 2 we show the error of the operator approximations when n=250. It is evident from the table that GBS type operator gives a better approximation.

Table 2 . Error of approximation operators Rn(h;x,y) and Pn(h;x,y) to the function h(x,y)=x2sin(yx) for n=250.

(x,y)|R250(h;x,y)h(x,y)||P250(h;x,y)h(x,y)|
(0.01,-0.01)0.003735396720.00007801713
(-0.02,0.02)0.004442183520.00015595725
(0.03,-0.04)0.003138383560.00026983045
(-0.03,-0.05)0.003732199450.00007189246
(0.05,-0.05)0.002764565580.00038854967
(0.06,-0.06)0.002517285060.00046541592
(-0.07,-0.05)0.004142466410.00006892313
(-0.07,-0.07)0.003915069740.00000000012
(0.08,-0.08)0.002023803120.00061769752
(0.09,-0.09)0.001775411940.00069296224


Figure 2. Approximations Rn(h;x,y) and Pn(h;x,y) of h(x,y)=x2sin(yx).
  1. P. N. Agrawal, A. M. Acu, R. Chaugan and T. Garg, Approximation of Bögel Continuous functions and deferred weighted A-statistical convergence by Bernstein-Kantorovich type operators on a triangle, J. Math. Inequal., 15(4)(2021), 1695-1711.
    CrossRef
  2. K. J. Ansari, F. Özger and Z. Ödemiş Özger, Numerical and theoretical approximation results for Schurer-Stancu operators with shape parameter λ, Comp. Appl. Math., 41(2022), 181.
    CrossRef
  3. C. Badea, K-functionals and moduli of smoothness of functions defined on compact metric spaces, Comput. Math. with Appl., 30(1995), 23-31.
    CrossRef
  4. C. Badea, I. Badea and H. H. Gonska, Notes on degree of approximation on b-continuous and b-differentiable functions, Approx. Theory Appl., 4(1988), 95-108.
  5. D. Bărbosu and O. T. Pop, A note on the gbs Bernstein's approximation formula, An. Univ. Craiova Ser. Mat. Inform., 35(2008), 1-6.
  6. G. Başcanbaz-Tunca, A. Erençin and H. İnce-İlarslan, Bivariate Cheney-Sharma operators on simplex, Hacet. J. Math. Stat., 47(4)(2018), 793-804.
  7. S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Comp. Comm. Soc. Mat. Charkow Ser., 13(1)(1912), 1-2.
  8. K. Bögel, Über mehrdimensionale differentiation von funktionen mehrerer reeller veränderlichen, J. für die Reine und Angew. Math., 170(1934), 197-217.
    CrossRef
  9. K. Bögel, Über mehrdimensionale differentiation, integration und beschränkte variation, J. für die Reine und Angew. Math., 173(1935), 5-30.
    CrossRef
  10. K. Bögel, Über die mehrdimensionale differentiation, Jahresber. Deutsch. Math. Verein., 65(1962), 45-71.
  11. S. Deshwal, N. Ispir and P. N. Agrawal, Bivariate operators of Bernstein-Kantorovich type on a triangle, Appl. Math. Inf. Sci., 11(2)(2017), 423-432.
    CrossRef
  12. E. Dobrescu and I. Matei, The approximation by Bernstein type polynomials of bidi-mensional continuous functions, An. Univ. Timi¸soara Ser. Sti. Mat.-Fiz., 4(1966), 85-90.
  13. B. R. Draganov, Strong estimates of the weighted simultaneous approximation by the Bernstein and Kantorovich operators and their iterated boolean sums, J. Approx. Theory, 200(2015), 92-135.
    CrossRef
  14. S. G. Gal. Shape-preserving approximation by real and complex polynomials. Springer Science and Business Media; 2010.
  15. M. Goyal, A. Kajla, P. N. Agrawal and S. Araci, Approximation by bivariate Bernstein-Durrmeyer operators on a triangle, Appl. Math. Inf. Sci., 11(2017), 693-702.
    CrossRef
  16. A. Kajla, Generalized Bernstein-Kantorovich-type operators on a triangle, Math. Methods Appl. Sci., 42(12)(2019), 4365-4377.
    CrossRef
  17. A. Kajla and M. Goyal, Modified Bernstein-Kantorovich operators for functions of one and two variables, Rend. Circ. Mat. Palermo(2), 67(2)(2018), 379-395.
    CrossRef
  18. L. V. Kantorovich, Sur certain développements suivant les polynômes de la forme des. Bernstein, I, II, CR Acad. URSS, 563(1930), 568.
  19. E. H. Kingsley, Bernstein polynomials for functions of two variables of class C(k), Proc. Amer. Math. Soc., 2(1)(1951), 64-71.
    CrossRef
  20. M. Heshamuddin, N. Rao, B. P. Lamichhane, A. Kiliçman and M. Ayman-Mursaleen, On One- and Two-Dimensional α-Stancu-Schurer-Kantorovich Operators and Their Approximation Properties, Mathematics, 10(18)(2022), 3227.
    CrossRef
  21. O. T. Pop and M. D. Fărcas, Approximation of b-continuous and b-differentiable functions by GBS operators of Bernstein bivariate polynomials, J. Inequal. Pure Appl. Math., 7(9)(2006).
  22. O. T. Pop and M. D. Fărcas, About the bivariate operators of Kantorovich type, Acta Math. Univ. Comenian., 78(1)(2009), 43-52.
    CrossRef
  23. R. Ruchi, B. Baxhaku and P. N. Agrawal, GBS operators of bivariate Bernstein-Durrmeyer type on a triangle, Math. Methods Appl. Sci., 41(7)(2018), 2673-2683.
    CrossRef
  24. M. Sidharth, N. Ispir and P. N. Agrawal, GBS operators of Bernstein-Schurer-Kantorovich type based on q-integers, Appl. Math. Comput., 269(2015), 558-568.
    CrossRef
  25. H. Srivastava, K. J. Ansari, F. Özger and Z. Ödemiş Özger, A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9(2021), 1895.
    CrossRef
  26. D. D. Stancu, A method for obtaining polynomials of Bernstein type of two variables, Am. Math. Mon., 70(3)(1963), 260-264.
    CrossRef
  27. V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk SSSR, 151(1)(1957), 17-19.
  28. K. Weierstrass, Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer reellen veränderlichen, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 2(1885), 633-639.
  29. D. X. Zhou, On smoothness characterized by Bernstein type operators, J. Approx. Theory, 81(3)(1995), 303-315.
    CrossRef