검색
Article Search

JMB Journal of Microbiolog and Biotechnology

OPEN ACCESS eISSN 0454-8124
pISSN 1225-6951
QR Code

Article

Kyungpook Mathematical Journal 2021; 61(3): 631-644

Published online September 30, 2021

Copyright © Kyungpook Mathematical Journal.

Harnack Estimate for Positive Solutions to a Nonlinear Equation Under Geometric Flow

Ghodratallah Fasihi-Ramandi, Shahroud Azami*

Department of Pure Mathematics, Faculty of Science Imam Khomeini International University, Qazvin, Iran
e-mail : fasihi@sci.ikiu.ac.ir and azami@sci.ikiu.ac.ir

Received: August 28, 2019; Revised: June 16, 2020; Accepted: August 18, 2020

In the present paper, we obtain gradient estimates for positive solutions to the following nonlinear parabolic equation under general geometric flow on complete noncompact manifolds ut=u+a(x,t)up+b(x,t)uq where, 0 < p, q < 1 are real constants and a(x, t) and b(x, t) are functions which are C2 in the x-variable and C1 in the t-variable. We shall get an interesting Harnack inequality as an application.

Keywords: Geometric Flow, Harnack Estimate, Nonlinear Parabolic Equations.

Gradient estimates for nonlinear partial differential equations are of classical interest, and have been extensively studied, leading to many important results, especially in the area of geometric analysis. They were developed by Li and Yau [6] as a method to study the heat equation. Hamilton applied this method {to Ricci flow on manifolds with scalar curvature} [4]. Since then, there has been a lot of work on gradient estimates for solutions of differential equations under geometric flows, see, for instance [5, 7]. Extending some of this work, Sun [9] studied gradient estimates for positive solutions of the heat equation under the geometric flow. Also, the differential Harnack estimates plays an important role in solving the Poincaré conjecture and the geometrization conjecture [8].

In the present paper, we study the following nonlinear parabolic equation under general geometric flow on complete noncompact manifolds M,

ut=u+a(x,t)up+b(x,t)uq

where, 0<p,q<1 are real constants and a(x,t) and b(x,t) are functions which are C2 in the x-variable and C1 in the t-variable. Before presenting our main results about the equation, {we motivate its consideration as a topic of study.} If a(x,t) and b(x,t) are identically zero, then (1.1) is the heat equation. In bio-mathematics, the following equation

ut=u+a(x,t)up,  p>0,

could be used to model population dynamics. Similar equations arise in the study of the conformal deformation of scalar curvature on a manifold (See [10], equation (1.4)).

Let (M,g(t)) be a smooth 1-parameter family of complete Riemannian metrics on a manifold M evolving by equation

gijt=2sij

for t in some time interval [0,T], where sij are componnents of a symmmetric (0,2)-tensor s. Notice that

• if sij=Rij then geometric flow (1.2) called Ricci flow,

• if sij=12Rgij then geometric flow (1.2) called Yamabe flow,

• if sij=(Rij+ρRgij) then geometric flow (1.2) called Ricci-Bourguignon flow,

• if sij=Rij+αϕϕ where ϕt=τgϕ then geometric flow (1.2) called harmonic-Ricci flow.

Now we present our main results about the equation (1.1) as follows.

Theorem 1.1. Suppose (M,g(t)) is the family of complete Riemannian manifolds evolving by (1.2). Let M be complete under the initial metric g(0). Given x0∈ M, and M1,R>0, let u be a positive solution to the nonlinear equation (1.1) with uM1 in the cube Q2R,T={(x,t)|d(x,x0,t)2R,0tT}. Suppose that there exist constants K1,K2,K3,K40 such that

RicK1g,K2gsK3g,|s|K4

on Q2R,T. Moreover, assume that there exist positive constants θa,θb,γa,γb such that aθa, |a|γa, bθb and |b|γb in Q2R,T. Then for any constant 0<β<1 and (x,t)Q2R,T if β<p,q<1 we have

β|u|2u2+aup1+buq1utuH1+H2+nβ1t,

where,

H1=nβ((n1)(1+K1R)c12+c2+2c12R2+c3K2+|a|(1p)M1(p1)+|b|(1q)M1(q1)+nc122R2(ββ2)),
H2=[n24β2(1β)2(2(1β)K3+2βK1+32K4)2+nβ{M1(p1)θa+M1(q1)θb+n(1β(K2+K3)2+32K4)}nβ{[(pβ)M1(p1)γa+(qβ)M1(q1)γb]2|a|(pβ)(p1)M1(p1)+|b|(qβ)(q1)M1(q1)}]12.

When R approaches infinity, we get the global Li-Yau type gradient estimates (see [6]) for equation (1.1) as follows.

Corollary 1.2. Let (M, g(0)) be a complete noncompact Riemannian manifold without boundary, and suppose that g(t) evolves by gijt=2sij for t[0,T] and satisfies

RicK1g,K2gsK3g,|s|K4.

Also, assume that aθa, bθb, |a|γa and |b|γb in M×[0,T) for some constants θa,θb,γa and γb. Let u be a positive solution of (1.1) with u ≥ M1. Then for any constant 0<β<1, if β<p,q<1, we have

β|u|2u2+aup1+buq1utuH1¯+H2+nβ1t,

where

H1¯=nβ(c3K2+|a|(1p)M1(p1)+|b|(1q)M1(q1)).

As an application, we get the following Harnack inequality.

Corollary 1.3. Let (M, g(0)) be a complete noncompact Riemannian manifold without boundary, and suppose that g(t) evolves by gijt=2sij for t[0,T] and satisfies

RicK1g,K2gsK3g,|s|K4.

Also, assume that aθa, bθb, |a|γa and |b|γb in M×[0,T) for some constants θa,θb,γa and γb. Let u(x,t) be a positive solution of (1.1) in M×[0,T) with u ≥ M1 where, a and b are positive constants. Then for any constant 0<β<1, if β<p,q<1, for any points (x1,t1) and (x2,t2) on M×[0,T) with 0<t1<t2, we have the following Harnack inequality,

u(x1,t1)u(x2,t2)(t2 t1 )nβeΨ(x1,x2,t1,t2)+(H1 ¯+H2)(t2t1),

where Ψ(x1,x2,t1,t2)=infγt1 t2 1 4β|γ|2dt, and H1¯=nβ(c3K2+a(1p)M1(p1)+b(1q)M1(q1)), and

H2=[n24β2(1β)2(2(1β)K3+2βK1+32K4)2+nβ{M1(p1)θa+M1(q1)θb+n(1β(K2+K3)2+32K4)}nβ{[(pβ)M1(p1)γa+(qβ)M1(q1)γb]2a(pβ)(p1)M1(p1)+b(qβ)(q1)M1(q1)}]12.

Let u be a positive solution to (1.1). Let w=lnu, then a simple computation shows that w satisfies the following equation

wt=w+|w|2+ae(p1)w+be(q1)w.

We need the following lemmas of [3, 9] to prove our main theorem.

Lemma 2.1. If the metric evolves by (1.2) then for any smooth function w, we have

t|w|2=2s(w,w)+2wwt

and

tw=wt2s2w2w(divs12(trgs)),

where, divs denotes the divergence of s.

Lemma 2.2. Assume that (M, g(t)) satisfies the hypotheses of Proposition 1.1. Then for any constant 0<β<1 and (x,t)QR,T, if β<p,q<1, we have

(t)F2wF+t{βn(wt|w|2ae(p1)wbe(q1)w)2    +[a(pβ)(p1)e(p1)w+b(qβ)(q1)e(q1)w+2(β1)K3    2βK132K4]|w|2    +2(pβ)e(p1)wwa+2(qβ)e(q1)wwb    +e(p1)wa+e(q1)wbn(1β(K2+K3)2+32K4)}    a(p1)e(p1)wFb(q1)e(q1)wFFt,

where

F=t(β|w|2+ae(p1)w+be(q1)wwt).

Proof. Define

F=t(β|w|2+ae(p1)w+be(q1)wwt).

By the Bochner formula, we can write

|w|22|2w|2+2w(w)2K1|w|2.

Note that

wt=(w)t+2s2w+2w(divs12(trgs))  =wtt(|w|2)tate(p1)wae(p1)wbte(q1)wbe(q1)w  +2s2w+2w(divs12(trgs))  =2s(w,w)2wwtate(p1)wae(p1)w  bte(q1)wbe(q1)w+wtt+2s2w+2w(divs12(trgs)),

and

w=|w|2ae(p1)wbe(q1)w+wt=(1β1)(ae(p1)w+be(q1)wwt)Ftβ=(β1)|w|2Ft.

We can write,

F=t(β|w|2+(ae(p1)w)+(be(q1)w)wt).

According to the above computations, we obtain

β|w|22β|2w|2+2βw(w)2βK1|w|2    =2β|2w|2+2βw([(1β1)(ae(p1)w+be(q1)wwt)Ftβ])    2βK1|w|2    =2β|2w|22twF+2(1β)e(p1)wwa    +2(1β)e(q1)wwb    +2a(1β)(p1)e(p1)w|w|2    +2b(1β)(q1)e(q1)w|w|2    +2(1β)wwt2K1β|w|2,

and, we know

(ae(p1)w)=e(p1)wa+2(p1)e(p1)wwa+a(p1)2e(p1)w|w|2    +a(p1)e(p1)ww    =e(p1)wa+2(p1)e(p1)wwa+a(p1)2e(p1)w|w|2    +a(p1)e(p1)w[(β1)|w|2Ft].

So we have

Ft{2β|2w|22twF+2(1β)e(p1)wwa+2(1β)e(q1)wwb+2a(1β)(p1)e(p1)w|w|2+2b(1β)(q1)e(q1)w|w|2+2(1β)wwt2k1β|w|2+e(p1)wa+2(p1)e(p1)wwa+a(p1)2e(p1)w|w|2+a(p1)e(p1)w[(β1)|w|2Ft]+e(q1)wb+2(q1)e(q1)wwb+b(q1)2e(q1)w|w|2+b(q1)e(q1)w[(β1)|w|2Ft][wtt(|w|2)tate(p1)wa(p1)e(p1)wwtbte(q1)wb(q1)e(q1)wwt+2s2w+2w(divs12(trgs))]},

and

Ft=Ft+t{2β(|w|2)t+ate(p1)w+a(p1)e(p1)wwt+bte(q1)w+b(q1)e(q1)wwtwtt}=Ft+t{2βwwt2βs(w,w)+ate(p1)w+a(p1)e(p1)wwt+bte(q1)w  +b(q1)e(q1)wwtwtt}.

This equation implies that

(t)F2wF+t{2β|2w|2+2(β1)s(w,w)    +a(pβ)(p1)e(p1)w|w|2+b(qβ)(q1)e(q1)w|w|2    +2(pβ)e(p1)wwa+2(qβ)e(q1)wwb    +e(p1)wa+e(q1)wb    2K1β|w|22s2w2w(divs12(trgs))}    a(p1)e(p1)wF    b(q1)e(q1)wF Ft.

By our assumptions, we have

(K2+K3)gs(K2+K3)g

which implies that

|s|2(K2+K3)2|g|2=n(K2+K3)2.

Using Young's inequality and applying those bounds yields

|s2w|β2|2w|2+12β|s|2β2|2w|2+n2β(K2+K3)2.

On the other hand,

|divs12(trgs)|=|gijisjl12gijlsij|32|g||s|32nK4.

Finally, with the help of the following inequality,

|2w|21n(tr2w)2=1n(w)2=1n(|w|2ae(p1)wbe(q1)w+wt)2.

We obtain

(t)F2wF+t{βn(wt|w|2ae(p1)wbe(q1)w)2  +a(pβ)(p1)e(p1)w|w|2+b(qβ)(q1)e(q1)w|w|2  +2(pβ)e(p1)wwa+2(qβ)e(q1)wwb+e(p1)wa  +e(q1)wb+2(β1)K3|w|22βK1|w|2nβ(K2+K3)2  3nK4|w|}a(p1)e(p1)wFb(q1)e(q1)wFFt.

Applying AM-GM inequality, we can write

3nK4|w|3K4(n2+|w|22),

we get

(t)F    2wF+t{βn(wt|w|2ae(p1)wbe(q1)w)2    +[a(pβ)(p1)e(p1)w+b(qβ)(q1)e(q1)w+2(β1)K3    2βK132K4]|w|2+2(pβ)e(p1)wwa+2(qβ)e(q1)wwb    +e(p1)wa+e(q1)wbn(1β(K2+K3)2+32K4)}    a(p1)e(p1)wFb(q1)e(q1)wFFt.

This completes the proof.

Let's take a cut-off function φ˜ defined on [0,) such that 0φ˜(r)1, φ˜(r)=1 for r[0,1] and, φ˜(r)=0 for r[2,). Furthermore φ˜ satisfies the following inequalities for some positive constants c1 and c2.

φ˜(r)φ˜12(r)c1,  φ˜(r)c2.

Define r(x,t):=d(x,x0,t) and, set

φ(x,t)=φ˜(r(x,t)R).

Using Corollary in page 53 of [2], we can assume φ(x,t)C2(M) with support in Q2R,T. A direct calculation indicates that on Q2R,T, we have

|φ|2φc12R2.

According to the Laplace comparison theorem in [1], we can write

φ(n1)(1+K1R)c12+c2R2.

For any 0<T1<T, suppose that φF attains it maximum value at the point (x0,t0) in the cube Q2R,T1. We can assume that this maximum value is positive (otherwise the proof of our main theorem will be trivial). At the maximum point (x0,t0), we have

(φF)=0,(φF)0,(φF)t0,

which follows that

0(t)(φF)=(φ)FφtF+φ(t)F+2φF.

So, we can write

(φ)FφtF+φ(t)F2Fφ1|φ|20.

Also, we know (see [9], p. 494) there exists a positive constant c3 such that

φtFc3K2F.

The inequality (2.4) together with the inequalities (2.2) and (2.3) yield

φ(t)FHF,

where

H=(n1)(1+K1R)c12+c2+2c12R2+c3K2.

Proof of Theorem 1.1. At the maximum point (x0,t0), by (2.5) and Lemma 2.2, we have

0φ(t)FHFHF+φ{2wF+βt0n(wt|w|2ae(p1)wbe(q1)w)2+t0[a(pβ)(p1)e(p1)w+b(qβ)(q1)e(q1)w+2(β1)K32βK132K4]|w|2+2t0(pβ)e(p1)wwa+2t0(qβ)e(q1)wwb+t0e(p1)wa+t0e(q1)wbnt0(1β(K2+K3)2+32K4)a(p1)e(p1)wFb(q1)e(q1)wFFt0}
HF+2Fwφ+βt0nφ(wt|w|2ae(p1)wbe(q1)w)2+t0φ[a(pβ)(p1)e(p1)w+b(qβ)(q1)e(q1)w+2(β1)K32βK132K4]|w|2+2t0φ(pβ)e(p1)wwa+2t0φ(qβ)e(q1)wwb+t0φe(p1)wa+t0φe(q1)wbnt0φ(1β(K2+K3)2+32K4)a(p1)e(p1)wφFb(q1)e(q1)wφFφt01F
HF+2Fwφ+βt0nφ(wt|w|2ae(p1)wbe(q1)w)2t0φ[|a|(pβ)(p1)M1(p1)+|b|(qβ)(q1)M1(q1)+2(1β)K3+2βK1+32K4]|w|2+2t0φ(βp)M1(p1)γa|w|+2t0φ(βq)M1(q1)γb|w|t0φM1(p1)θat0φM1(q1)θbnt0φ(1β(K2+K3)2+32K4)+|a|(p1)M1(p1)φF+|b|(q1)M1(q1)φFφt01F=HF+2Fwφ+βt0nφ(wt|w|2ae(p1)wbe(q1)w)2t0φ[|a|(pβ)(p1)M1(p1)+|b|(qβ)(q1)M1(q1)]|w|2t0φ[2(1β)K3+2βK1+32K4]|w|2t0φ[2(pβ)M1(p1)γa+2(qβ)M1(q1)γb]|w|t0φ[M1(p1)θa+M1(q1)θb+n(1β(K2+K3)2+32K4)]+|a|(p1)M1(p1)φF+|b|(q1)M1(q1)φFφt01F.

For the sake of simplicity, set

C˜1=2(1β)K3+2βK1+32K4C˜2=M1(p1)θa+M1(q1)θb+n(1β(K2+K3)2+32K4)

and

C˜3=[(pβ)M1(p1)γa+(qβ)M1(q1)γb]2|a|(pβ)(p1)M1(p1)+|b|(qβ)(q1)M1(q1).

Using the inequality ax2+bxb24a which holds for a<0, we obtain

0HF+2Fwφ+βt0nφ(wt|w|2ae(p1)wbe(q1)w)2t0φ[C˜3+C˜2+C˜1|w|2]+|a|(p1)M1(p1)φF+|b|(q1)M1(q1)φFφt01F.

Noting the fact that 0<φ<1 and multiplying both sides of the above inequality by t0φ, leads to

0Ht0φF+2t0φFwφ+βt02nφ2(wt|w|2ae(p1)wbe(q1)w)2C˜1t02φ2|w|2(C˜2+C˜3)t02φ2+|a|(p1)M1(p1)t0φF+|b|(q1)M1(q1)t0φFφFHt0φF2c1Rt0φF|w|φ32+|a|(p1)M1(p1)t0φF+|b|(q1)M1(q1)t0φFφF+βt02nφ2[(wt|w|2ae(p1)wbe(q1)w)2nβC˜1|w|2](C˜2+C˜3)t02φ2,

where in the last inequality the following fact is applied

2φwF=2Fwφ2F|w||φ|2c1Rφ12F|w|.

Assume that

y=φ|w|2,  z=φ(ae(p1)w+be(q1)wwt).

So, we can write

0φF(Ht0+|a|(p1)M1(p1)t0+|b|(q1)M1(q1)t01)2c1Rt0F|w|φ32+βt02nφ2[(wt|w|2ae(p1)wbe(q1)w)2nβC˜1|w|2](C˜2+C˜3)t02φ2φF(Ht0+|a|(p1)M1(p1)t0+|b|(q1)M1(q1)t01)+βt02n{(yz)2nβC˜1y2nc1R1y12(y1βz)}(C˜2+C˜3)t02.

For all a,b>0 the inequality ax2bxb24a holds for every real number x. Using this inequality, we obtain

βt02n{(yz)2nβC˜1y2nc1R1y12(y1βz)}=βt02n{β2(yzβ)2+(1β2)y2nβC˜1y+[2(ββ2)y2nc1Ry12](yzβ)}βt02n{β2(yzβ)2n2C˜124β2(1β)2n2c122R2(ββ2)(yzβ)}=βn(φF)2nC˜12t024β(1β)2nc12t02R2(ββ2)(φF).

Hence,

βn(φF)2+[Ht0+|a|(p1)M1(p1)t0+|b|(q1)M1(q1)t01nc12t02R2(ββ2)](ϕF)nC˜12t024β(1β)2(C˜2+C˜3)t020.

As we know, the inequality Ax22BxC, yields x2BA+CA. So, we get

φFnβ(Ht0+|a|(1p)M1(p1)t0+|b|(1q)M1(q1)t0+1+nc12t02R2(ββ2))  +[nβ(nC˜124β(1β)2+C˜2+C˜3)]12t0.

If d(x,x0,T1)2R, we know that φ(x,T1)=1. Then

F(x,T1)=T1(β|w|2+ae(p1)w+be(q1)wwt)  φF(x0,t0)  nβ(Ht0+|a|(1p)M1(p1)t0+|b|(1q)M1(q1)t0+1+nc12t02R2(ββ2))  +[nβ(nC˜124β(1β)2+C˜2+C˜3)]12t0.

Since T1 was supposed to be arbitrary, we can get the assertion.

Proof of Corollary 1.3. For any points (x1,t1) and (x2,t2) on M×[0,T) with 0<t1<t2, we take a curve γ(t) parametrized with γ(t1)=x1 and γ(t2)=x2. In the ray of Corollary 1.2, one can get

logu(x2,t2)logu(x1,y1)=t1t2((logu)t+logu,γ)dtt1t2(β|logu|2+aup1+buq1H1¯H2nβt|logu||γ|)dtt1t2(14β|γ|2aup1buq1+H1¯+H2+nβt)dt(log(t2t1)nβ+(H1¯+H2)(t2t1)+t1t214β|γ|2dt)

which means

logu(x1,t1)u(x2,t2)log(t2t1)nβ+(H1¯+H2)(t2t1)+t1t2 1 4β |γ|2dt.

Hence,

u(x1,t1)u(x2,t2)(t2 t1 )nβeΨ(x1,x2,t1,t2)+(H1 ¯+H2)(t2t1),

where Ψ(x1,x2,t1,t2)=infγt1 t2 1 4β|γ|2dt, and H1¯=nβ(c3K2+a(1p)M1(p1)+b(1q)M1(q1)), and

H2=[n24β2(1β)2(2(1β)K3+2βK1+32K4)2+nβ{M1(p1)θa+M1(q1)θb+n(1β(K2+K3)2+32K4)}nβ{[(pβ)M1(p1)γa+(qβ)M1(q1)γb]2a(pβ)(p1)M1(p1)+b(qβ)(q1)M1(q1)}]12.
  1. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampre equations, Springer, New York, 1982.
    CrossRef
  2. E. Calabi, An extension of E. Hopf s maximum principle with an application to Riemannian geometry, Duke Math. J.,25(1)(1958), 45-56.
    CrossRef
  3. B. Chow and D. Knopf, The Ricci flow; An introduction, Mathematical survey and monographs, vol. 110, AMS, New York, 2004.
    Pubmed CrossRef
  4. R. S. Hamilton,The Harnack estimate for the Ricci flow, J. Differ. Geom., 37(1)(1993), 225-243.
    CrossRef
  5. S. Kuang and Q. S. Zhang,A gradient estimate for all positive solutions of the conju-gate heat equation under Ricci flow, J. Funct. Anal., 255(4)(2008), 1008-1023.
    CrossRef
  6. P. Li and S. T. Yau, On the parabolic kernel of the Schr¨odinger operator, Acta Math., 156(3-4)(1986), 153-201.
    CrossRef
  7. S. P. Liu, Gradient estimates for solutions of the heat equation under Ricci flow, Pacific J. Math., 243(1)(2009), 165-180.
    CrossRef
  8. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: math/0211159, 2002.
  9. J. Sun, Gradient estimates for positive solutions of the heat equation under geometric flow, Pacific J. Math., 253(2)(2011), 489-510.
    CrossRef
  10. J. Y. Wu, Gradient estimates for a nonlinear parabolic equation and Liouville theorems, Manuscripta mathematica, 159(3-4)(2019),511-547.
    CrossRef