Article
KYUNGPOOK Math. J. 2019; 59(3): 481-491
Published online September 23, 2019 https://doi.org/10.5666/KMJ.2019.59.3.481
Copyright © Kyungpook Mathematical Journal.
Some Coefficient Inequalities Related to the Hankel Determinant for a Certain Class of Close-to-convex Functions
Yong Sun∗, Zhi-Gang Wang
School of Science, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, People’s Republic of China
e-mail : yongsun2008@foxmail.com
Mathematics and Computing Science, Hunan First Normal University, Changsha, 410205, Hunan, People’s Republic of China
e-mail : wangmath@163.com
Received: November 14, 2017; Revised: February 1, 2019; Accepted: March 4, 2019
Abstract
In the present paper, we investigate the upper bounds on third order Hankel determinants for certain class of close-to-convex functions in the unit disk. Furthermore, we obtain estimates of the Zalcman coefficient functional for this class.
Keywords: coefficient inequality, Hankel determinant, Zalcman’s conjecture, close-to-convex functions.
Introduction
Let be the class of functions analytic in the unit disk of the form
A function is said to be starlike of order
Recall that a function is close-to-convex in if it is univalent and the range is a close-to-convex domain, i.e., the complement of can be written as the union of nonintersecting half-lines. A normalized analytic function
In [11], Gao and Zhou investigated the following class of close-to-convex functions.
Definition 1.1
Suppose that is analytic in of the form
Theorem A. ([11])
Theorem B. ([11])
Noonan and Thomas [24] studied the Hankel determinant
We note that
By the definition,
Theorem C
In 1960, Lawrence Zalcman posed a conjecture that the coefficients of satisfy the sharp inequality
In the present investigation, our purpose is to develop similar results on the Hankel determinants in the context the close-to-convex functions . Further-more, the upper bounds to the Zalcman functional for this class are obtained.
Preliminary Results
Denote by the class of Carathéodory functions
Lemma 2.1. ([8])
Lemma 2.2.([13])
Lemma 2.3.([20, 21])
The Upper Bounds of the Hankel Determinant
In this section, we first give an upper bound of the functional |
Theorem 3.1
Let
Theorem 3.2
Using the values of
Let . Then using the above results in theorem
Theorem 3.3
Let
Remark 3.1
In Theorem 3.1, Theorem3.2 and Theorem 3.3, we have obtained the upper bounds for the Hankel determinant. However, these results are far from sharp.
The Upper Bounds of the Zalcman Functional
In this section, we consider the Zalcman functional for functions .
Theorem 4.1
Let
For the case of
References
- KO. Babalola.
On H3(1) Hankel determinant for some classes of univalent functions . Inequal. Theory Appl..,6 (2007), 1-7. - D. Bansal.
Upper bound of second Hankel determinant for a new class of analytic functions . Appl. Math. Lett.,26 (2013), 103-107. - D. Bansal, S. Maharana, and JK. Prajapat.
Third order Hankel determinant for certain univalent functions . J. Korean Math. Soc..,52 (2015), 1139-1148. - JE. Brown, and A. Tsao.
On the Zalcman conjecture for starlike and typically real functions . Math. Z..,191 (1986), 467-474. - DG. Cantor.
Power series with integral coefficients . Bull. Amer. Math. Soc..,69 (1963), 362-366. - NE. Cho, B. Kowalczyk, OS. Kwon, A. Lecko, and YJ. Sim.
Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha . J. Math. Inequal..,11 (2017), 429-439. - P. Dienes. The Taylor series: an introduction to the theory of functions of a complex variable,
, Dover Publications, New York, 1957. - PL. Duren. Univalent functions,
, Springer Verlag, New York, 1983. - A. Edrei.
Sur les déterminants récurrents et les singularités d’une fonction donnée par son développement de Taylor . Compos. Math..,7 (1940), 20-88. - M. Fekete, and G. Szegő.
Eine Bemerkung über ungerade schlichte Funktionen . J. London Math. Soc..,8 (1933), 85-89. - C. Gao, and S. Zhou.
On a class of analytic functions related to the starlike functions . Kyungpook Math. J..,45 (2005), 123-130. - WK. Hayman.
On the second Hankel determinant of mean univalent functions . Proc London Math Soc.,18 (1968), 77-94. - T. Hayami, and S. Owa.
Generalized Hankel determinant for certain classes . Int. J. Math. Anal..,4 (2010), 2573-2585. - A. Janteng, SA. Halim, and M. Darus.
Coefficient inequality for a function whose derivative has a positive real part . J. Inequal. Pure Appl. Math..,7 (2006) Article 50, 5. - A. Janteng, SA. Halim, and M. Darus.
Hankel determinant for starlike and convex functions . Int. J. Math. Anal..,1 (2007), 619-625. - W. Koepf.
On the Fekete-Szegö problem for close-to-convex functions . Proc. Amer. Math. Soc..,101 (1987), 89-95. - W. Koepf.
On the Fekete-Szegö problem for close-to-convex functions II . Arch. Math..,49 (1987), 420-433. - SK. Lee, V. Ravichandran, and S. Subramaniam.
Bounds for the second Hankel determinant of certain univalent functions . J. Inequal. Appl..,2013 (2013) Article 281, 17. - L. Li, and S. Ponnusamy.
Generalized Zalcman conjecture for convex functions of order − 1/2 . J. Anal..,22 (2014), 77-87. - RJ. Libera, and EJ. Złotkiewicz.
Early coefficients of the inverse of a regular convex function . Proc. Amer. Math. Soc..,85 (1982), 225-230. - RJ. Libera, and EJ. Złotkiewicz.
Coefficient bounds for the inverse of a function with derivatives in P . Proc. Amer. Math. Soc..,87 (1983), 251-257. - WC. Ma.
The Zalcman conjecture for close-to-convex functions . Proc. Amer. Math. Soc..,104 (1988), 741-744. - W. Ma.
Generalized Zalcman conjecture for starlike and typically real functions . J Math Anal Appl.,234 (1999), 328-339. - JW. Noonan, and DK. Thomas.
On the second Hankel determinant of areally mean p-valent functions . Trans. Amer. Math. Soc..,223 (1976), 337-346. - C. Pommerenke.
On the coefficients and Hankel determinants of univalent functions . J. London Math. Soc..,41 (1966), 111-122. - JK. Prajapat, D. Bansal, A. Singh, and AK. Mishra.
Bounds on third Hankel determinant for close-to-convex functions . Acta Univ. Sapientiae Math..,7 (2015), 210-219. - M. Raza, and SN. Malik.
Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli . J. Inequal. Appl..,2013 (2013) Article 412, 8. - TJ. Suffridge.
Some special classes of conformal mappings . Handbook of complex analysis: Geometric Function Theory,2 , Elsevier Sci. B. V., Amsterdam, 2005:309-338. - P. Zaprawa.
Third Hankel determinants for subclasses of univalent functions . Mediterr. J. Math..,14 (1)(2017) Art 19, 10.