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ABSTRACT. The present paper deals with Lorentzian a-Sasakian manifolds with confor-
mally flat and quasi conformally flat curvature tensor. It is shown that in both cases,
the manifold is locally isometric with a sphere Sznﬂ(c). Further it is shown that an
Lorentzian a-Sasakian manifold with R(X,Y).C = 0 is locally isometric with a sphere
52" +1(¢), where ¢ = o.

0. Introduction

In [9], S. Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension. For such a manifold, the
sectional curvature of plane sections containing £ is a constant, say c. He showed
that they can be divided into three classes:

(1) homogeneous normal contact Riemannian manifolds with ¢ > 0,

(2) global Riemannian products of a line or a circle with a Kaehler manifold of
constant holomorphic sectional curvature if ¢ = 0 and

(3) a warped product space R x; C if ¢ < 0.

It is known that the manifolds of class (1) are characterized by admitting a Sasakian
structure. Kenmotsu ([18]) characterized the differential geometric properties of
the manifolds of class (3); the structure so obtained is now known as Kenmotsu
structure. In general, these structures are not Sasakian ([18]).

In the Gray-Hervella classification of almost Hermitian manifolds ([13]), there
appears a class, Wy, of Hermitian manifolds which are closely related to locally
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conformal Kaehler manifolds ([20]). An almost contact metric structure on a man-
ifold M is called a trans-Sasakian structure ([11]) if the product manifold M x R
belongs to the class Wy. The class Cg @ C5([16], [18]) coincides with the class of the
trans-Sasakian structures of type («, 3). In fact, in [18], local nature of the two sub-
classes, namely, C5 and Cg structures, of trans-Sasakian structures are characterized
completely.

We note that trans-Sasakian structures of type (0,0), (0,8) and («,0) are
cosymplectic ([1]), f-Kenmotsu ([19]) and a-Sasakian ([19]) respectively. In ([12]) it
is proved that trans-Sasakian structures are generalized quasi-Sasakian ([17]). Thus,
trans-Sasakian structures also provide a large class of generalized quasi-Sasakian
structures.

An almost contact metric structure (¢,&,n,g) on M is called a trans-Sasakian
structure ([11]) if (M x R, J, G) belongs to the class Wy([13]), where J is the
almost complex structure on M x R defined by

J(X, fd/dt) = (X — f&n(X)fd/dt)

for all vector fields X on M and smooth functions f on M xR, and G is the product
metric on M x R. This may be expressed by the condition ([21])

(Vx@)Y = ag(X,Y)§ = n(Y)X) + B(g(6X,Y)E = n(Y)oX)

for some smooth functions a and § on M, and we say that the trans-Sasakian
structure is of type («, 3).
Let (z,vy,2) be Cartesian coordinates in R?, then (¢, &,,g) given by

0 -1 0 e“4+y? 0 —y
§=0/0z, n=dz—ydz, ¢=1 0 0 |, g= 0 e 0
0 —y 0 —y 0 1

is a trans-Sasakian structure of type (—1/(2¢?), 1/2) in R3([21]). In general, in
a 3-dimensional K-contact manifold with structures tensors (¢,&,n,g) for a non-
constant function f, if we define ¢ = fg+ (1 — f)n ® n; then (¢,€,1,9) is a
trans-Sasakian structure of type (1/f, (1/2)¢(In f))([14], [15], [16]).

Corollary 1 ([7]). A trans-Sasakian structure of type (o, ) with o a nonzero
constant is always a-Sasakian.

In this case a becomes a constant. If o = 1, then a-Sasakian manifold is
Sasakian.

In this paper, we investigate Lorentzian a-Sasakian manifolds in which

(1) C=0
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where C is the Weyl conformal curvature tensor. Then we study Lorentzian a-
Sasakian manifolds in which

(2) C=0

where C' is the quasi conformal curvature tensor. In the both cases, it is shown
that an Lorentzian a-Sasakian manifold is isometric with a sphere S?"*1(c), where
¢ = o?. Finally, an Lorentzian a-Sasakian manifold with

(3) R(X,Y).C=0

has been considered, where R(X,Y) is considered as a derivation of the tensor
algebra at each point of the manifold of tangent vectors X, Y. It is easy to see that
R(X,Y).R =0 implies R(X,Y).C = 0. So it is meaningful to undertake the study
of manifolds satisfying the condition (3).

1. Preliminaries

A differentiable manifold of dimension (2n + 1) is called Lorentzian a-Sasakian
manifold if it admits a (1, 1)—tensor field ¢, a contravariant vector field &, a covariant
vector field n and Lorentzian metric g which satisty ([2], [3], [4], [5], [6], [7])

5 ¢ = I+n8¢,
9(¢X,9Y) = g(X,Y)+n(X)nY),

g(ng) = U(X)v
o€ =0, n(¢X) =0

A~ N N /N o/
oo D
o — D D

forall X, Y € TM.
Also an Lorentzian a-Sasakian manifold M is satisfying ([8])

9) Vxé = —a¢X,
(10) (Vxn)Y = —ag(¢X,Y).
where V denotes the operator of covariant differentation with respect to the
Lorentzian metric g.

An Lorentzian a-Sasakian manifold M is said to be n-Einstein if its Ricci tensor
S is of the form
(11) S(X,Y) = ag(X,Y) + bn(X)n(Y)

for any vector fields X, Y, where a, b are functions on M.
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Further, on an Lorentzian a-Sasakian manifold M the following relations hold

([71, [10])

(12) R X)Y = o*(g(X,Y)¢ - n(Y)X),
(13) RIX, V), = o*((Y)X —n(X)Y),
(14) R(EX)E = o’(n(X)E+X),

(15) S(X,§) = 2na’n(X),

(16) Q¢ = 2mna%,

(17) S(6€) = -2na’,

where S is the Ricci curvature and @ is the Ricci operator given by S(X,Y) =
9(QX.Y).

2. Lorentzian o-Sasakian manifolds with C =0

The conformal curvature tensor C on M?2"*1 is defined as

19 cxnz = 'z | Ty S ox
~ =D W, 2)Y — g(¥. 2)X]
where

S(X,Y) =g(QX,Y).
Using (1) we get from (18)

1 S(Y,2)X - S(X,2)Y
2n—1 | +9(Y,Z2)QX — g(X, Z)QY

+ m l9(X,2)Y —g(Y,2)X].

(19) R(X,Y)Z =

Taking Z =¢ in (19) and using (7), (13) and (15), we find

T 2na?

2n(2n—1) (2n—1)

(o + J(Y)X —n(X)Y)
1

= 57 (Y)QX —n(X)QY).

Taking Y = ¢ and using (4) we get

(20) QX = (i —a )X+(% — a2 — 2na®)n(X)E.

Thus the manifold is n-Einstein.
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Contracting (20) we get

(21) T = 2n(2n + 1)’
Using (21) in (20) we find
(22) QX = 2na’X.

Putting (22) in (19) we get after a few steps
(23) RX,Y)Z = ®(g(Y,2)X — g(X,2)Y).
Thus a conformally flat Lorentzian a-Sasakian manifold is of constant curva-

ture. The value of this constant is «?. Hence we can state.

Theorem 2. A conformally flat Lorentzian a— Sasakian manifold is locally isomet-

ric to a sphere S*"T1(c), where ¢ = a®.

3. Lorentzian a-Sasakian manifolds with 5’ =0

The quasi conformal curvature tensor C' on M?"*! is defined as

(24) C(X,Y)Z = aR(X,Y)Z+b{S(Y,Z2)X — 8(X,Z)Y
+9(Y, Z)QX —g(X,2)QY}
T a
- m(% +20){g(Y, 2)X — g(X,2)Y'}
where a,b are constants such that ab # 0 and
S(Y,2) = g(QY, 2).

Using (2), we find from (24)

(5) ROX,Y)Z = —{S(Y,2)X ~ S(X, 2)Y +4(¥, 2)QX — 4(X, 2)QY)
i (5 + 20 He (Y, 2)X — g(X, 2)Y}.

(2n+1)a 2n
Taking Z = £ in (25) and using (7), (13) and (15), we get

(26)  @Xm(V)X —n(X)Y) = {n(¥)QX —n(X)QV}
T (o) 22 () X ()Y
(2n+1)a 2n g K '
Taking Y = ¢ and applying (4) we have

+{ 24 9b) — dna® — %a2}n(X)§.

(2n+ l)b(2n
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Contracting (27), we get after a few steps
(28) T = 2n(2n+ 1)’
Using (28) in (27), we get
(29) QX = 2na’X.
Finally, using (29), we find from (25)
RX,V)Z = o*{g(Y, Z)X — g(X, Z)Y}.
Thus we can state

Theorem 3. A quasi conformally flat Lorentzian a-Sasakian manifold is locally

isometric to a sphere S?"*1(c), where ¢ = o?.

4. Lorentzian a-Sasakian manifolds satisfying R(X,Y).C =0
Using (7), (12) and (15) we take X = ¢, we find from (18)

(30) (O Y)Z) = 5l = a?) (oY, Z)n(X)

—9(X, Z)n(Y)} ={S(Y, Z)n(X) = S(X, Z)n(Y)}].

Putting Z = ¢ in (30) and using (7) and (15), we get
(31) n(C(X,Y)§) = 0.
Again X = ¢ in (30)

B aCENIZ) = (0 g e 2)
5 4na? T
B T b ey UACOLIED
1
- 58 2).
Now

(33) (REY)O)UVIW = R(EY)CWUV)W—-C(REY)U VW
—C(U, R, Y)W —C(UV)R(,Y)W.

Using (3), we find from above

—g[C(R(EYV)UV)W,&] = g[C(U, V)R(E, Y)W, £] = 0.
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Using (7) and (12) we get

(34)  —a®g(CU,VI)WY) = a®n(Y)n(C(U, V)W) — a®g(Y,U)n(C(£, V)W)

+a?n(U)n(C(Y, V)W) — a®g(Y.V)n(C(U,

—a®g(Y, W)n(C (U, V)€) + a®n(W)n(C(

Putting U =Y in (34)

(35)  —a*g(C(U,VIW,U) — o*n(U)n(C(U, V)W) — a’g(U,U)n(C(& V)W)
+a2(U)n(C(U, V)W) = a2g(U,V)n(C(U, )W) + o*n(V)n(C(U, U)W)
—a?g(U, W)n(C(U,V)€) + a?n(W)n(C(U,V)U) = 0.

Let {eNZ :1=1,---,2n+ 1} be an orthonormal basis of the tangent space at any

point, then the sum for 1 <i < n of the relations (35) for U = ¢; gives

7277’04277(0(57 V)W) - 07
(36) n(CEVIW) = 0 asn>1.

Using (31) and (36), (34) takes the form

(37) —a?g(C(U, V)W, Y) = (Y )n(C(U, V)W) + *n(U)n(C(Y, V)W)
+a®n(V)n(C(U,Y )W) + o®n(W)n(C(U,V)Y)
= 0
Using (30) in (37), we get
(38) —a?g(C(U,V)W,Y)
(W) g (0 = D In@)g(¥, V)~ n(V)g(U,¥))
—{n0)SY,V) =n(V)S(U,Y)}]
= 0

In virtue of (36), (32) reduces to

(39)  S(V,2) = (5~ —a?)g(Y,2) + ( = (2n+1)a®)n(Y)n(2).

2n 2n+1
Using (39), (37) reduces to
(40) —a’g(C(U,V)WY) = 0,
ie.,
(41) CU,VYW = 0.

Hence the manifold is conformally flat. Using the Theorem 1, we state
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Theorem 4. If in an Lorentzian a-Sasakian manifold M?"*1(n > 1) the relation
R(X,Y).C = 0 holds, then it is locally isometric with a sphere S*"T1(c), where
c=oa".

For a conformally symmetric Riemannian manifold [1], we have VC' = 0. Hence
for such a manifold R(X,Y).C' = 0 holds. Thus we have the following corollary of
the above theorem:

Corollary 5. A conformally symmetric Lorentzian a-Sasakian manifold M*"+1 (n >

1) is locally isometric with a sphere S*"*1(c), where ¢ = a?.
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