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Abstract. A purely extending module is a generalization of an extending module. In this

paper, we study several properties of purely extending modules and introduce the notion

of purely essentially Baer modules. A module M is said to be a purely essentially Baer if

the right annihilator in M of any left ideal of the endomorphism ring of M is essential in a

pure submodule of M . We study some properties of purely essentially Baer modules and

characterize von Neumann regular rings in terms of purely essentially Baer modules.

1. Introduction

In this paper, all rings are considered to be associative rings with unity, and
all modules are unital right modules unless otherwise stated. Recall that a module
M is called an extending module (CS) or said to have the C1 condition if every
submodule of M is essential in a direct summand of M . Extending modules are
closely related to injective modules and it has been shown that extending modules
generalize such modules as injective modules, quasi-injective modules, and contin-
uous modules (see [11] and [14]). In [5], Clark called a module M purely extending
if every submodule of M is essential in a pure submodule of M and proved that
closed submodules of a purely extending module are pure submodules. The notion
of purely extending modules generalizes the notion of extending modules.

Rizvi and Roman [13] introduced the notion of Baer modules. An R-module
M is said to be a Baer module if the right annihilator in M of every left ideal I
of S = End(M) is a direct summand of M . In [1], Atani and Khoramdel called
a module M purely Baer if the right annihilator in M of every left ideal of S is
a pure submodule of M . They also showed that the class of purely Baer modules
contains the class of Baer modules. According to Nhan [12], a module is said to be
essentially Baer if the right annihilator in M of every left ideal of S is essential in
a direct summand of M .

Motivated by the essentially Baer module and purely Baer module, we intro-
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duced the purely essentially Baer module.
The following implications justify the connection among the extending mod-

ule, purely extending module, Baer module, purely Baer module, essentially Baer
module, and purely essentially Baer module.

Extending module
Nonsingular

−−−−−−−−−→ Baer module −−−−−−→
Essentially

Baer module





y





y





y

Purely

extending module

Nonsingular
−−−−−−−−−→ Purely Baer module −−−−−−→

Purely essentially

Baer module

The converse of any statements in above diagram need not be true (see [1], [2],
[5], [11], [12], [13]).

In this paper, several properties of purely extending modules are studied. In
general, the direct sum of purely extending modules need not be purely extending,
and also submodules of a purely extending module need not be purely extending;
counter-examples are given. We study when the direct sum of purely extending
modules is purely extending and when the submodules of a purely extending mod-
ule are purely extending. We prove that a finitely generated torsion-free module
over a principal ideal domain is a purely extending module. Also, we discuss when
the endomorphism ring of a module is purely extending.

In Section 4, we introduce and study the notion of purely essentially Baer mod-
ules. We call a module M purely essentially Baer if the right annihilator in M
of every left ideal of S = EndR(M) is essential in a pure submodule of M . It is
shown that the purely essentially Baer module is a proper and common generaliza-
tion of purely Baer module and purely extending module. We prove that a purely
essentially Baer module is closed under direct summands. We characterize purely
essentially Baer modules in terms of von Neumann regular rings.

2. Preliminaries

The notations≤, ≤⊕, ≤e, ≤p and≤c denote a submodule, a direct summand, an
essential submodule, a pure submodule, and a closed submodule, respectively. For
an R-module M , E(M), S = EndR(M) and ClM (N) = {m ∈ M : (N : m) ≤e R}
(or in short, Cl(N)) denote the injective hull of a module M , the endomorphism
ring of a module M and the closure of a submodule N in a module M , respectively.
Let M be an R-module and X be a subset of S = EndR(M), then rM (X) = {m ∈
M : ϕ(m) = 0, ∀ ϕ ∈ X}. A regular ring will always mean a von Neumann regular
ring.

First we recall some definitions and results which are useful in our further work.

Definition 2.1. A short exact sequence 0 → N1

φ
−→ N2 → N3 → 0 of right R-

modules is said to be pure exact if 0 → N1⊗F → N2⊗F → N3⊗F → 0 is an exact
sequence (of abelian groups) for any left R-module F [9]. In this case, φ(N1) is a
pure submodule of M . According to Cohn [6], a submodule N of a right R-module
M is said to be a pure submodule of M if and only if 0 → N ⊗L → M ⊗L is exact
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for every left R-module L. Also, the condition for a right R-module M to be flat
is that whenever 0 → N1 → N2 is exact for left R-modules N1 and N2, then so is
0 → M ⊗N1 → M ⊗N2.

Proposition 2.2.

(i) [9, Proposition 4.29]. A ring R is Noetherian if and only if all finitely gen-
erated right R-modules are finitely presented.

(ii) [9, Proposition 4.30] A finitely related R-module M is flat if and only if it is
projective .

Lemma 2.3. ([7, Proposition 8.1.]) The following conditions hold:

(i) Let N be a submodule of a right R module M . If M/N is flat, then N ≤p M .
Moreover, for a flat right R module M , N ≤p M if and only if M/N is flat.

(ii) If N is a submodule of M such that every finitely generated submodule of N
is a pure submodule of M , then N ≤p M .

Lemma 2.4. ([7, Proposition 7.2.]) Suppose L ⊆ N ⊆ M be right R modules.

(i) If L ≤p N and N ≤p M , then L ≤p M .

(ii) If L ≤p M , then L ≤p N .

(iii) If L ≤p N , then N/L ≤p M/L.

(iv) If L ≤p M and N/L ≤p M/L, then N ≤p M .

In general, pure submodules of a module need not be direct summands. There
are modules whose pure submodules are direct summands.

Definition 2.5. A right R-module M is said to be a pure split module if every
pure submodule of M is a direct summand of M [7]. Recall that a ring R is
said to be a right pure semisimple if every right R-module is a pure injective [17].
Moreover, a ring R is called a pure semisimple ring if every pure exact sequence
0 → A → B → C → 0 of right R-modules splits.

Definition 2.6. An R-module M is called Baer if the right annihilator in M of
every left ideal of S is a direct summand of M ([2], [13]). Also, M is called a
purely Baer module if the right annihilator in M of every left ideal of S is a pure
submodule of M [1].

Definition 2.7. A submodule N is called a strongly large submodule of a module
M if every m ∈ M mI = 0, then m(m−1N)I = 0 where I is an ideal of R.
An R-module M is said to be a strongly extending module if every strongly large
submodule of M is a direct summand of M . It is seen that every strongly extending
module is an extending module [16].

Proposition 2.8. ([1, Theorem 3.]) A nonsingular purely extending module is a
purely Baer module.
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Lemma 2.9. ([15, Lemma 3.1.]) Let N be a submodule of M . If N ⊇ ClM (0),
then ClM (N) is a closed submodule of M .

3. Purely Extending Modules

In this section, we study some more properties of purely extending modules.
According to Clark [5], a moduleM is a purely extending module if every submodule
of M is essential in a pure submodule of M ; equivalently, every closed submodule
of M is a pure submodule of M . Also, a ring R is called a right purely extending
ring if RR is a purely extending R-module.

Every extending module is purely extending. The following example shows that
a purely extending module need not be an extending module.

Example 3.1.

(i) By [8, Example 13.8], there exists a commutative continuous regular ring F
such that R = M2×2(F ) (2 by 2 matrix ring over F ) is neither a left nor
right continuous ring. Since F is a regular ring, R is a regular ring. So, RR

is a purely extending right R-module while RR is not a right extending R-
module. In fact, by [11, Proposition A.14] a regular ring is right continuous
if and only if it is a right extending ring. Therefore, RR is neither a left nor
right extending R-module.

(ii) Let F be a field and Fn = F for every n ∈ N. Consider R = Π∞
n=1Fn and

A = {(xn)
∞
n=1 ∈ R1 : xn is constant eventually}, where A is a subring

of R. Clearly, A is a regular ring, but not a Baer ring (see [2, Example
3.1.14(ii)]). So, A is a purely extending ring but not an extending ring. In
fact, a nonsingular extending ring is a Baer ring but A is not a Baer ring [2,
Lemma 4.1.17]. Hence, AA is a purely extending A-module which is not an
extending A-module.

Now we discuss when a purely extending module to be an extending module.

Theorem 3.2.

(i) A finitely generated flat R-module M over a noetherian ring is purely extend-
ing module if and only if it is an extending module.

(ii) An R-module M over a pure semisimple ring R is purely extending if and
only if it is an extending module.

(iii) A pure split module M is purely extending module if and only if it is an
extending module.

Proof.

(i) Let N be a submodule of a purely extending module M . Then there exists a
pure submodule P of M such that N ≤e P , so by Lemma 2.3, M/P is flat.
Since M/P is finitely generated and R is a Noetherian ring, M/P is finitely
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presented. Thus M/P is projective by Proposition 2.2. Therefore, P ≤⊕ M .
Hence, M is an extending module. The converse is obvious.

(ii) Let R be a pure semisimple ring and N be a submodule of a purely extending
module M . Then, there exists a pure submodule L of M such that N ≤e L.
Since R is a pure semisimple ring, for any right R-module P , the pure exact
sequence 0 → L⊗K → M ⊗K → P ⊗K → 0 splits for every left R-module
K. Therefore, the exact sequence 0 → L → M → P → 0 also splits. Thus
L ≤⊕ M . Hence, M is an extending module. The converse is clear.

(iii) It follows from the fact that an R-module M is pure split if every pure sub-
module of M is a direct summand of M . 2

In general, submodules of a purely extending module need not be purely extending.

Example 3.3. Let R =

(

Z Z

0 Z

)

, then RR is a finitely generated and Noetherian

R-module which is not extending R-module (see, [4, Example 2.2]). Therefore, RR

is not a purely extending R-module. If E(RR) is the injective hull of RR, then
E(RR) is purely extending while RR is not.

Now, we provide the condition under which submodules of a purely extending mod-
ule are purely extending.

Proposition 3.4. Let M be a purely extending module and N be a submodule of
M . If for every pure submodule P of M , N ∩ P is a pure submodule of N , then N
is a purely extending.

Proof. Let V ≤ N . Then there exists a pure submodule P of M such that V ≤e P ,
which implies V ≤e P ∩ N . Since P ∩ N is a pure submodule of N , so we get
V ≤e N ∩ P ≤p N . Hence, N is a purely extending submodule of M . 2

Proposition 3.5. Let M be a module, N be a purely extending submodule of M
and P be a pure submodule of M . If P +N is nonsingular, then P ∩N is a pure
submodule of M .
Proof. Let P be a pure submodule of M and V = P ∩ N . Since V ≤ N and N
is purely extending, there exists a pure submodule Q of N such that V is essential
in Q. Assume that V 6= Q, then P 6= P + Q. Let p ∈ P and q ∈ Q such that
p+ q ∈ P +Q and p+ q /∈ P , then q 6= 0. Therefore, there exists an essential right
ideal S of R such that 0 6= qS ⊆ V . Since P is nonsingular, 0 6= (p+q)S ⊆ P . Thus
P is essential in P +Q, which is a contradiction. Therefore, we get V = Q. 2

Corollary 3.6. If M is a nonsingular module, N is a purely extending submodule
of M and P is a pure submodule of M , then P ∩N is a pure submodule of N .

Proposition 3.7. Every direct summand of a purely extending module is a purely
extending.

Proof. Let M be a purely extending module and N ≤⊕ M . To prove N is purely
extending, it suffices to show that every closed submodule of N is a pure submodule
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of N . Let V ≤c N . Since every direct summand is closed, V ≤c N ≤c M . Thus
V ≤c M . Also, M is a purely extending module, V ≤p M . Therefore, V ≤p N . 2

Now we give an example which shows that the direct sum of purely extending
modules need not be purely extending.
Example 3.8. Let R = Z andM = Zp⊕Zp3 (where p is a prime number). Clearly,
M is not an extending R-module. Since M is a finitely generated R-module and R
is a Noetherian ring, M is not a purely extending R-module. But Zp and Zp3 are
extending R-modules, so Zp and Zp3 are purely extending R-modules.

Now we discuss when the direct sum of purely extending modules is purely
extending.

Proposition 3.9. Let M =
⊕

i∈I Mi be the direct sum of R-modules Mi (i ∈ I)
for an index set |I| > 2. Then the following statements are equivalent:

(i) M is purely extending;

(ii) There exists i, j ∈ I, i 6= j such that every closed submodule W of M with
W ∩Mi = 0 or W ∩Mj = 0 is a pure submodule of M ;

(iii) There exists i, j ∈ I, i 6= j, such that every complement of Mi or Mj in M
is a purely extending and a pure submodule of M .

Proof. (i) ⇒ (ii). It is clear.
(ii) ⇒ (iii). Let N be a complement of Mi in M , so by the hypothesis N is a pure
submodule of M . Now, to prove N is purely extending, it suffices to prove that
every closed submodule of N is a pure submodule of N . Let L ≤c V , then L ≤c M
and clearly L∩Mi = 0. Therefore, L is a pure submodule of M . Hence, by Lemma
2.4, L is a pure submodule of N .
(iii) ⇒ (i). Let N ≤c M , so there exists a closed submodule L of N such that
N ∩ Mi ≤e L which implies that L ∩ Mj = 0. By Zorn’s Lemma, there exists a
complement H of Mj in M such that L ≤ H . From which it follows that L ≤c M
and hence L ≤c H . Applying (iii), we see that L is a pure submodule of H and
H is a pure submodule of M . So by Lemma 2.4, L ≤p M . Thus L ≤p N . Since
L ⊆ N ⊆ M , by Lemma 2.4 N/L ≤p M/L. Therefore, L ≤p M and N/L ≤p M/L.
Hence, N ≤p M . 2

Theorem 3.10. Let M =
⊕

i∈I Mi be the direct sum of right R-modules Mi (i ∈ I),
where I is an index set such that |I| > 2. Then M is an extending module if and
only if there exists a subset {i1, , i2, ..., in} of I such that every closed submodule
N with either N ∩ Mik ≤e N for some ik, 1 ≤ k ≤ n or N ∩ Mik = 0 for all k,
1 ≤ k ≤ n is a pure submodule.

Proof. The only if part is trivial.
To prove if part, it is enough to show that there exists i 6= j ∈ I such that every
closed submodule N of M with N ∩Mi = 0 or N ∩Mj = 0 is a pure submodule. To
prove it, let N be a closed submodule with N∩Mi1 = N∩Mi2 = . . . = N∩Min = 0.
If N ∩Mi1 = 0, then by assumption N is a pure submodule of M . Now we consider
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N ∩Mi1 6= 0 and L be a closed submodule of N such that N ∩Mi1 ≤e L. Since
L ≤c N ≤c M , L ≤c M . Therefore, L∩Mi1 = N∩Mi1 ≤e L. So by hypothesis, L is
a pure submodule of M . Applying Lemma 2.4, L ≤p N and N/L ≤p M/L, so again
by Lemma 2.4, N ≤p M . Continuing in similar steps, we can prove that whenever
N is a closed submodule of M with N ∩Min = 0, then N is a pure submodule of
M . Now there exists i1 6= in ∈ I such for every closed submodule N of M with
N ∩ Mi1 = 0 or N ∩ Min = 0 is a pure submodule of M . Hence, M is a purely
extending module. 2

Now we show when finitely generated torsion-free modules and finitely generated
flat modules are purely extending. The next result generalizes the Proposition 3.9
of [16].

Proposition 3.11. Every finitely generated torsion-free module over a principal
ideal domain is purely extending.

Proof. Let M be a finitely generated torsion-free module over a principal ideal
domain R and N ≤ M . Then M/N is either a torsion-free submodule or a torsion
submodule of M . Assume first that M/N is a torsion-free module, then M/N ∼= Rn

for some n ∈ N, which implies M/N is a projective module. So, M/N is flat and
hence N is a pure submodule of M . Now we suppose that M/N is not a torsion-
free module, then there exists a submodule L ≤ M containing N such that M/L is
torsion-free and L/N is torsion. Since M/L is a torsion-free and finitely generated
R-module. So, M/L is projective which implies that M/L is a flat module. There-
fore, L is a pure submodule of M . Now we show that N ≤e L. For it, let l ∈ L\N
and r1 ∈ R with lr1 6= 0. Suppose φ : L → L/N is the natural map. Since L/N is a
torsion submodule of M and φ(l) is non-zero in L/N , there exists 0 6= r2 ∈ R such
that φ(l)r2 = φ(lr2) = 0 ∈ L/N which implies that lr2 ∈ N . Therefore, N ≤e L
and L is a pure submodule of M . Hence, M is a purely extending module. 2

Corollary 3.12. A finitely generated torsion-free module over a principal ideal
domain is an extending module.

Corollary 3.13. ([16, Proposition 3.9.]) A finitely generated torsion-free module
over a principal ideal domain is a strongly extending module.

Proposition 3.14. Finitely generated flat R-module M over a principal ideal do-
main is purely extending.

Proof. It follows from Proposition 3.11 and by the fact that a module over principal
ideal domain is flat if and only if it is torsion-free. 2

Proposition 3.15. Every finitely generated torsion-free module over a prufer ring
is a purely extending module.

Proof. Let M be a finitely generated torsion-free module over a prufer ring R and
N be a closed submodule of M . Then M/N is also torsion-free. In fact, if M/N is
not torsion-free, then there exists m ∈ M\N such that mr ∈ N for some 0 6= r ∈ R,
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which contradicts that N is a closed submodule of M . Since M/N is finitely gen-
erated torsion-free and R is prufer ring, M/N is flat (see [9, Proposition 4.20]).
Hence, N is a pure submodule of M , which proves that M is purely extending. 2

Corollary 3.16. Every finitely generated flat module over a prufer ring is a purely
extending module.

Proposition 3.17. A nonsingular ring R is purely extending if and only if every
torsionless right R-module is flat.

Proof. Since nonsingular purely extending ring R is purely Baer ring, R is purely
extending if and only if every cyclic torsionless right R-module is flat (see [1, The-
orem 1]). 2

The following proposition tells about the behavior of closures of submodules of a
module with purely extending property.

Proposition 3.18. Let N be a submodule of the purely extending R-module M .
Then

(i) Cl(Cl(N)) is always a purely extending.

(ii) Cl(N) is purely extending if N ⊇ Cl(0).

Proof.

(i) Since Cl(N) ⊇ Cl(0), so by Lemma 2.9 Cl(Cl(N)) is always closed in M .
Thus Cl(Cl(N)) is a pure submodule of M and hence a purely extending
module.

(ii) Since under the given conditions, Cl(N) is closed, which implies that Cl(N)
is a pure submodule of M and hence a purely extending module. 2

The following example shows that the endomorphism ring of purely extending mod-
ule need not be purely extending.

Example 3.19. ([4, Example 2.3.]) Let R =





C C C

0 R C

0 0 C



 and e =





1 0 0
0 1 0
0 0 0



.

Note that RR is an extending module. Therefore, RR is purely extending. Take

M = eR, then S = EndR(M) ∼=





C C 0
0 R 0
0 0 0



. Since M is a direct summand of

RR, M is purely extending. But S is not a right purely extending ring. In fact,it is

easy to show that closed right ideal





0 0 0
0 R 0
0 0 0



 is not essential in any pure right

ideal of SS .

It is well known that the ring R is called a right V -ring if every simple right
R-modules are injective. Recall that a module M is said to be finitely cogenerated
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if for every set {Si}i∈I of submodules of M , ∩i∈ISi = 0 implies that ∩j∈JSj = 0
for some finite set J of I.

Now we discuss the conditions under which the endomorphism ring of a module
is purely extending.

Proposition 3.20.

(i) If M is a finitely generated projective right R-module over a regular ring, then
S = EndR(M) is purely extending.

(ii) If M is a finitely cogenerated right R-module over a right V -ring, then S =
EndR(M) is purely extending.

Proof.

(i) From [8, Theorem 1.7], the endomorphism ring S of a finitely generated
projective R-module M is regular. Therefore, S is purely extending.

(ii) If M is a finitely cogenerated right R-module over a right V -ring R, then by
[10, Proposition 2.14] M is endo-regular. Therefore, S is a regular ring so S
is purely extending. 2

Proposition 3.21. Let R be a semisimple artinian ring. Then the endomorphism
ring of every right R-module M is purely extending.

Proof. Let R be a semisimple artinian ring. Then every R-module M is an endo-
regular module which implies that S = EndR(M) is a regular ring. Hence, S is a
purely extending ring. 2

4. Purely Essentially Baer Modules

Definition 4.1. An R-module M is called a purely essentially Baer module if for
every left ideal I of S = EndR(M), rM (I) = {m ∈ M : ϕ(m) = 0, ∀ ϕ ∈ I} is
essential in a pure submodule of M . Further R is called a right purely essentially
Baer ring if RR is a purely essentially Baer R-module.

Proposition 4.2. Consider the following statements for a right R-module M :

(i) M is a purely Baer module.

(ii) M is a purely extending module.

(iii) M is a purely essentially Baer module.

Then (i) ⇒ (iii) and (ii) ⇒ (iii), but these implications are not reversible, in
general.

Proof. (i) ⇒ (iii) Let M be an R-module, S = EndR(M) and I be a left ideal of S.
By (i) rM (I) is a pure submodule of M , so M is a purely essentially Baer module.
(ii) ⇒ (iii) It is clear that rM (I) ≤ M for every left ideal I of S. Since by
assumption, M is a purely extending module, rM (I) is essential in a pure submodule
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of M .
(iii) ; (i) The Z-module Zp∞ (where p is any prime) is a purely essentially Baer
module while Zp∞ is not a purely Baer Z-module.

(iii) ; (ii) Let R =





F 0 F

0 F F

0 0 F



 the F-subalgebra of the ring M3×3(F) (3 by 3

matrix ring over F). Clearly, R is a left and right Artinian hereditary ring. Hence,
R is a left and right nonsingular ring. So from [1, Theorem 5], R is a purely Baer
ring. Thus, RR is a purely Baer R-module. Hence, RR is a purely essentially Baer
R-module, while RR is not purely extending. In fact, if RR is purely extending
R-module, then RR is an extending R-module, but from [3, Example 5.5], RR is
not an extending R-module. 2

In the following proposition, we prove when a purely essentially Baer module is a
purely Baer module.

Proposition 4.3. Let M be a nonsingular right R-module with S = EndR(M). If
M is a purely essentially Baer module, then M is a purely Baer module.

Proof. Let M be a purely essentially Baer module and I be a left ideal S. Then
rM (I) ≤e P , where P is a pure submodule of M . Let U = {r ∈ R : pr ∈ rM (I) for
p ∈ P}. Then U ≤e RR and pU ⊆ rM (I), so for each φ ∈ I, φ(pU) = φ(p)U = 0.
Since M is nonsingular, φ(p) = 0 for each φ ∈ I. Therefore, rM (I) = P is a pure
submodule of M . Hence, M is a purely Baer module. 2

We have seen that a purely essentially Baer module need not be essentially
Baer module. In the following proposition, we show when these two notions are
equivalent.

Proposition 4.4.

(i) Let M be a pure split module with S = EndR(M). Then M is a purely
essentially Baer module if and only if M is an essentially Baer module.

(ii) Let R be a right noetherian ring and M be a finitely generated flat right R-
module. Then M is a purely essentially Baer module if and only if it is an
essentially Baer module.

(iii) Let R be a right pure semisimple ring. Then a right R-module M is a purely
essentially Baer module if and only if M is an essentially Baer module.

Proof.

(i) Let M be a purely essentially Baer module and I be a left ideal of S. Then
rM (I) ≤e P for some pure submodule P of M . Since M is pure split, P is a
direct summand of M . Hence, M is an essentially Baer module.
The converse is clear.

(ii) Let M be a purely essentially Baer module and I be a left ideal of S. Then
rM (I) ≤e P for any pure submodule P of M . So by Lemma: 2.3, M/P is
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flat. Since by hypothesis, M/P is a finitely generated module and R is a
right Noetherian ring, by Proposition 2.2 M/P is a projective module. Thus,
P ≤⊕ M . Hence, M is an essentially Baer module. The converse is clear
from the definition.

(iii) The proof follows from the fact that for a pure semisimple ring R, every pure
exact sequence of R-modules splits. 2

Proposition 4.5. Direct summand of a purely essentially Baer module is purely
essentially Baer.

Proof. Let M = M1 ⊕M2 be an R-module. Then S = EndR(M) =

(

S1 S12

S21 S2

)

where Si = EndR(Mi) for i = 1, 2 and Sij = HomR(Mj ,Mi) for i 6= j, i, j = 1, 2.
Let I be a left ideal of S1 and J={

∑n
i=1

figi: fi ∈ S21 and gi ∈ I for all n ∈ N},

then T =

(

I 0
J 0

)

is clearly a left ideal of S. Since M is a purely essentially Baer

module, rM (T ) ≤e N for some pure submodule N of M . Let N = N1 ⊕ N2 such
that N1 ≤p M1 and N2 ≤p M2. For any (m1 + m2) ∈ M , where m1 ∈ M1 and
m2 ∈ M2, the element m1 + m2 ∈ rM (I) if and only if m1 ∈ rM1

(I). Therefore,
rM (T ) = rM1

(I) ⊕M2 ≤e N1 ⊕N2, which implies that rM1
(I) ≤e N1. Hence, M1

is a purely essentially Baer module. 2

Theorem 4.6. Let M be an R-module with S = EndR(M). Then the following
statements are equivalent:

(i) Every purely essentially Baer R-module is purely Baer;

(ii) Every purely extending R-module is purely Baer;

(iii) R is a regular ring.

Proof. (i) ⇒ (ii) Let M be a purely extending module and I be a left ideal of S.
Then rM (I) is essential in a pure submodule X of M , which implies that M is a
purely essentially Baer module. Therefore, from (i) M is a purely Baer module.
(ii) ⇒ (iii) Let M be an R-module and E(M) be the injective hull of M . Then,
the homomorphism φ : E(M) → E(E(M)/M) defined by φ(h) = h + M for each
h ∈ E(M), can be extended by the endomorphism φ̄ of E(M)⊕E(E(M)/M) such
that Ker(φ̄) = M . Since E(M) ⊕ E(E(M)/M) is a purely extending module, by
(ii) it is a purely Baer module. Hence, M is pure in E(M) ⊕ E(E(M)/M), which
implies that M is pure in E(M). Therefore, M is an absolutely pure R-module.
Hence, from [17, 37.6] R is a regular ring.
(iii) ⇒ (i) It is clear. 2

Proposition 4.7. Let M =
⊕

λ∈Λ
Mλ (where Λ is an index set) be such that

Hom(Mλ,Mµ) = 0 for every λ 6= µ ∈ Λ. Then M is a purely essentially Baer
module if and only if each Mλ (λ ∈ Λ) is purely essentially Baer.

Proof. If part is clear from Proposition 4.5.
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For only if part, let each Mλ is a purely essentially Baer module and S = EndR(M).
Since HomR(Mλ,Mµ) = 0 for every λ 6= µ ∈ Λ, S is viewed as a diagonal matrix
with Sλ (λ ∈ Λ) on its diagonal, where Sλ = EndR(Mλ). Let T be a left ideal
of S, then rM (T ) =

⊕

λ∈Λ
rMλ

(T ∩ Sλ). As each Mλ is a purely essentially Baer
module, so rMλ

(T ∩ Sλ) ≤e Xλ for a pure submodule Xλ of Mλ. So, we get
rM (T ) ≤e

⊕

λ∈Λ
Xλ. Since each Xλ is pure in Mλ,

⊕

λ∈Λ
Xλ is pure in

⊕

λ∈Λ
Mλ.

Hence, M is a purely essentially Baer module. 2

Proposition 4.8. Let N be a submodule of a purely essentially Baer module M .
If N ∩X is a pure submodule of N for each pure submodule X of M , then N is a
purely essentially Baer.

Proof. Let T = EndR(N) and I be a left ideal of T . As M is a purely essentially
Baer module, so rM (I) ≤e X where X is a pure submodule of M . Now rN (I) =
N ∩ rM (I), which is essential in X . From the assumption N ∩ rM (I) is a pure
submodule of N . Hence, N is a purely essentially Baer. 2

Proposition 4.9. A finitely generated Z-module M is a purely essentially Baer
module if M is a semisimple or torsion-free module.

Proof. If M is a semisimple module, then it is obviously purely essentially Baer
module. If M is a finitely generated torsion-free Z-module, then M ∼= Zn, n ∈ N,
which is a purely essentially Baer module. 2

The converse of the above proposition need not be true, in general.

Example 4.10. M = Z ⊕ Zp be a Z-module, where p is prime. Clearly, M is a
purely essentially Baer module but M is neither torsion-free nor semisimple.

Proposition 4.11. For a finitely generated projective R-module M , the following
statements are equivalent:

(i) M is a purely essentially Baer module;

(ii) The endomorphism ring of M is left purely Baer ring.

Proof. (i) ⇐⇒ (ii) It follows from the fact that the endomorphism ring of a finitely
generated projective module M is von Neumann regular.
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