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Abstract. In this paper, numerical techniques are presented for solving initial value prob-

lems of fractional differential equations with variable coefficients. The method is derived

by applying a Taylor vector approximation. Moreover, the operational matrix of fractional

integration of a Taylor vector is provided in order to transform the continuous equations

into a system of algebraic equations. Furthermore, numerical examples demonstrate that

this method is applicable and accurate.

1. Introduction

Fractional differential equations (FDEs) are generalizations of differential equa-
tions that replace integral order derivatives by fractional order derivatives. In gen-
eral, ordinary differential equations are applied on describing dynamic phenomena
in various fields such as physics, biology and chemistry. However, for some compli-
cated systems the common simple differential equations cannot provide agreeable
results. Therefore, in order to obtain better models, FDEs are employed instead
of integer order ones, see [3, 8, 16]. On the other hand, the FDEs are too compli-
cated to solve by analytical methods and theoretical background for this problem
is not well developed. Hence, in recent years mathematicians have discovered new
methods of numerical solution. There are several methods to solve FDEs, such as
variational iteration method [14, 15], Adomain decomposition method [2], fractional
differential transformation method [1], fractional finite difference method [12], and
wavelet method [9, 17].

Taylor series development can be very straightforward for representing a func-
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tion as power series, and Taylor series are frequently employed to approximate
solutions of complicated problems. There are several studies in which Taylor series
methods are applied to solve problems in control theory [10] or in partial differential
equations [4]. In the recent years, Taylor series have also been employed to solve
FDEs numerically, with the Bagley-Torvik (B-T) equation as an example. However,
the B-T equation is an FDE with constant coefficients [7]. Nevertheless, in this pa-
per, Taylor series is the chief tool used to solve FDEs with variable coefficients
numerically, by assuming that the solution can be expanded as a Taylor series.

In this paper, we introduce a novel method to approximate the solutions of
FDEs with given initial values. In this technique, the solution is approximated by
Taylor vectors. Moreover, an operational matrix to integrate the FDEs is provided,
and is utilized to project a continuous space to a discrete space, and to form a
system of algebraic equations. Some basic definitions and effective theorems of
fractional calculus are introduced in Section 1. Section 2 presents an error analysis
of our method. Due to the fact that solutions are approximated by Taylor series, a
Taylor basis operational matrix of fractional integration will be provided in Section
3. In Section 4, numerical examples demonstrate obtaining approximate solutions.
Finally, the Conclusion will be in Section 5.

2. Preliminaries

Due to the fact that there are several definitions of fractional derivatives and
integrals, this section is necessary to define the fractional calculus used. The Caputo
derivative and the Riemann-Liouville integral are well-known and widely applied.
In this paper, we focus on not only the Caputo’s fractional derivative, but also on
the Riemann-Liouville fractional integral.

Definition 2.1.([13]) The Caputo’s fractional derivative of order α is defined as

(2.1) Dαu(t) =
1

Γ(n− α)

∫ t

0

u(n)(s)

(t− s)α+1−n ds, 0 ≤ n− 1 < α ≤ n, n ∈ N.

where α is the order of the derivative and n is the smallest integer which is greater
than α.

Definition 2.2.([13]) The Riemann-Liouville fractional integral operator of order
α ,Iα, is given by

(2.2) Iαu(t) =

{
1

Γ(α)

∫ t
0
(t− s)α−1u(s)ds, α > 0

u(t), α = 0.

An important property of the Riemann-Liouville fractional integral that it is a
linear operator [5], i.e.

(2.3) Iα(λf(t) + g(t)) = λIαf(t) + Iαg(t),
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where λ is a constant. Moreover, a well-known Riemann-Liouville fractional integral
formula regards its effects on powers of the integrand

(2.4) Iαtq =
Γ(q + 1)

Γ(q + 1 + α)
tα+q, for q > −1.

Furthermore, Caputo’s fractional derivative of order α also obeys

(2.5) Dαu(t) = In−α
(
dnu(t)

dtn

)
where α ∈ R and n−1 < α ≤ n with n ∈ N. The relation between the Caputo frac-
tional derivative and Riemann-Liouville integral operator is that they are ”almost”
inverses, except for integration constants that necessarily emerge:

Dα(Iαu(t)) = u(t)

and Iα(Dαu(t)) = u(t)−
n−1∑
k=0

uk(0)
tk

k!
for t > 0.(2.6)

3. Taylor Function Approximations

Since the purpose of this paper is to find numerical solutions of FDEs, the error
bounds need to be considered, which is now addressed. The Taylor basis vector is
given by

(3.1) Tm(t) = [1, t, t2, t3, ..., tm]t

where m is a positive integer. Clearly Tm ⊂ H , where H = L2[0, 1]. Let
S = span {1, t, t2, ..., tm} and y be an arbitrary element in H. Since S is a fi-
nite dimensional vector subspace of H, there exists a unique y0 ∈ S which is the
best approximation of y, i.e.

(3.2) min
ŷ∈S
‖ y − ŷ ‖=‖ y − y0 ‖ .

Since y0 ∈ S, there exits the unique coefficients a0, a1, ...., am such that

(3.3) y ≈ y0 =

m∑
k=0

akt
k = AtTm(t)

where AT = [a0, a1, a2, ..., am].
By Taylor’s theorem, see [11], for smooth enough y ∈ Cm+1[0, 1]. Then

y(t) = y0(t) +Rm(t)

where y0(t) =
∑m
k=0

y(k)(0)tk

k! and Rm(t) = y(m+1)(c)tm+1

(m+1)! for some c ∈ R.
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Lemma 3.1. Let y0(t) be the best approximation of y ∈ S and y(t) ∈ Cm+1[0, 1]
then

(3.4) ‖ y(t)− y0(t) ‖H≤
M

(m+ 1)!

√
1

2m+ 3

where M = supt∈[0,1] ‖ y(m+1)(t) ‖ .
Proof. The proof is similar to those in [6, 7]. 2

The next theorem is the main theorem in this paper. When a solution of an
FDE is approximated by a truncated Taylor series, the error bounds for fractional
integrals must be considered.

Theorem 3.2. Suppose that the conditions of Lemma 3.1 are satisfied. Then, for
t ∈ [0, 1],

‖ Iαy(t)− Iαy0(t) ‖≤ M

(m+ 1)!Γ(α)

√
1

2m+ 3
.

Proof. Since the fractional integral is a linear operator, we have

‖ Iαy(t)− Iαy0(t) ‖ =‖ Iα(y(t)− y0(t)) ‖

≤ 1

Γ(α)

∫ t

0

‖ (t− s)α−1(y(s)− y0(s)) ‖H ds

≤ 1

Γ(α)

∫ 1

0

‖ (t− s)α−1(y(s)− y0(s)) ‖H ds

≤ 1

Γ(α)

∫ 1

0

‖ (y(s)− y0(s) ‖H ds.(3.5)

Substituting inequality (3.4) into (3.5), we can achieve the desired result. 2

4. Taylor Basis Operational Matrices of Fractional Integration

Now we apply Definition 1.2 of the Riemann-Liouville fractional integral Iα.
The Taylor basis operational matrix representing the linear operation of fractional
order integration Iα is defined by

IαTm(t) = [Iα(1), Iα(t), Iα(t2), ...., Iα(tm)]t

= [
Γ(1)

Γ(α+ 1)
tα,

Γ(2)

Γ(α+ 2)
t1+α,

Γ(3)

Γ(α+ 3)
t2+α, ...,

Γ(m+ 1)

Γ(α+m+ 1)
tm+α]t.

5. Applications of the method

In this section, we apply the Taylor basis operational matrix of fractional order
integration to solve four examples of fractional differential equations with variable
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coefficients. These problems are based on initial value problems. The examples
demonstrate that our method is practically applicable. To obtain better results,
we should increase the number of basis functions used in the approximation, or
essentially truncate the Taylor series later. For convenience, the programs for com-
putational solutions were written in MatLab.

Example 5.1. Consider the following fractional differential equation

(5.1) D1/3u(t) + t1/3u(t) = f(t), t ∈ [0, 1],

with the initial condition is u(0) = 0 and f(t) = 3
2Γ( 2

3 )
t2/3 + t4/3. The exact solution

is u(t) = t. This example is provided by [17].

We provide two alternative approaches to approximate solution. First, we as-
sume that

(5.2) D1/3u(t) = AtTm(t).

Applying the equation (2.6) with an initial condition, we have

(5.3) u(t) = AtI1/3Tm(t).

Substituting equations (5.2) and (5.3) into equation (5.1), we obtain

(5.4) AtTm(t) + t1/3AtI1/3Tm(t) = f(t).

In order to determine A, we collocation at the points ti = t0 + ih with h = 1/m
and t0 = 0. For convenience, the coefficient in (5.1) can be set as

t1/3 =


t
1/3
0 0 · · · 0

0 t
1/3
1 · · · 0

...
...

. . .
...

0 · · · 0 t
1/3
m−1

 .

For collocation the right-hand side of (5.1) is similarly discretized to

F(t) = [f(t0), f(t1), ..., f(tm−1)]t.

Now the continuous problem has been projected to discrete space. Hence, we
have algebraic equations with At to be solved from

(5.5) (Tm(t) + t1/3I1/3Tm(t))A = F(t).

The eventual numerical solution is u(t) = AtI1/3Tm(t). The numerical imple-
mentations for m = 5, 10, and 15 are illustrated by their absolute errors in Fig.1(a),
since the analytical solution in this case is known. In Fig.1(a), we can see that
the numerical solutions had good accuracy. Furthermore, Table 1 compares these
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Figure 1: This absolute error in Example 5.1 with various numbers m of
Taylor basis functions. (a) u(t) = AtI1/3Tm(t) , (b) u(t) = AtI1Tm(t).

t Ours (m = 15) Ref.[17](m = 64)

0.0625 8.745028e− 004 2.082093e− 003
0.1875 2.498965e− 004 9.743606e− 004
0.3125 1.480609e− 004 6.67794e− 004
0.4375 1.037922e− 004 5.129034e− 004
0.5625 7.883851e− 005 4.175219e− 004
0.6875 6.289737e− 005 3.523496e− 004
0.8125 5.238139e− 005 3.048147e− 004
0.9375 3.629887e− 005 2.685403e− 004

Table 1: The absolute error in Example 5.1 shown in comparison to the
method of [17].

absolute errors to those of the numerical solution in [17]. Moreover, the absolute
errors consistently diminished with the number of basis functions used.

An alternative choice to solve this case is by setting

(5.6) Du(t) = AtTm(t).

Then, we obtain

u(t) = AtI1Tm(t)(5.7)

and D1/3u(t) = AtI2/3Tm(t).(5.8)

The approach to determine A is essentially unchanged, by employing collocation.
In order to avoid a singular matrix, the collocation points are set at ti = t1 + ih
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with h = 1/m and t1 = h for i = 1, 2, 3, ...,m. Then the coefficient matrix of (5.1)
is

t1/3 =


t
1/3
1 0 · · · 0

0 t
1/3
2 · · · 0

...
...

. . .
...

0 · · · 0 t
1/3
m

 .

and the right-hand side of (5.1) can be restated as

F(t) = [f(t1), f(t2), ..., f(tm)]t.

The system of an algebraic equation is analogous to that in (5.5). Finally,
the solution is approximated by u(t) = AtI1Tm(t). With this latter approach, the
approximate solution is very close to the exact solution. The absolute errors are
shown in Fig 1(b). One can see that the errors are better than with the previous
approach. For good results, we should set Dnu(t) = AtTm(t) with n = dαe where
α is the order of the fractional differential equation.

The next example is more complicated than the previous, since the initial values
are nonzero. Still the method of solution remains quite similar.

Example 5.2. Consider the following initial value problem

(5.9) D2u(t) + cos(t)D3/2u(t)− tu(t) = f(t), t ∈ [0, 1]

where f(t) = 2 + 2 cos(t)t2/3

Γ(3/2) − t
3 − t with initial condition u(0) = 1 and u′(0) = 0.

The exact solution is u(t) = t2 + 1.

The method to solve this problem is similar to Example 5.1. First, we set

(5.10) D2u(t) = AtTm(t).

Then the initial conditions are applied to get

D3/2u(t) = AtI1/2Tm(t)(5.11)

u(t) = AtI2Tm(t) + 1.(5.12)

Applying the collocation points defined as Example 5.1, we let

B(t) = diag[cos(t0), cos(t1), ..., cos(tm−1)](5.13)

C(t) = diag[t0, t1, ..., tm−1](5.14)

E = [1, 1, 1, ..., 1]t(5.15)

and F(t) = [f(t0), f(t1), ..., f(tm−1)]t.(5.16)

Substituting the equation (5.10)-(5.16) into (5.9), we obtain a system of algebraic
equation

(5.17)
[
Tm(t) + B(t)I1/2Tm(t)−C(t)(I2Tm(t) + E)

]
A = F(t).
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Figure 2: This absolute errors of Example 5.2 for various numbers m of the
Taylor basis functions.

This system of algebraic equations is solved for vector A. Then, employing (5.12),
we get the numerical approximation of u(t). The absolute errors with m = 5, 10
and 15 are exhibited in Fig.2. We can see that the absolute errors are very small,
so this example corroborates that our method can work very well.

Example 5.3.([17]) Consider the following initial value problem

(5.18) D2u(t) + sin(t)D1/2u(t) + tu(t) = f(t), t ∈ [0, 1]

where f(t) = t9−t8+56t6−42t5+sin(t)( 32768
6435 t

15/2− 2048
429 t

13/2) with initial condition
u(0) = 0 and u′(0) = 0. The exact solution is u(t) = t8 − t7.

The method to solve this problem is similar to Example 5.1 . First, we set

(5.19) D2(u(t)) = AtTm(t).

Then the initial conditions are applied, we have

D1/2u(t) = AtI3/2Tm(t)(5.20)

u(t) = AtI2Tm(t).(5.21)

Applying the collocation points defined as Example 5.1, we let

B(t) = diag[sin(t0), sin(t1), ..., sin(tm−1)](5.22)

C(t) = diag[t0, t1, ..., tm−1](5.23)

and F(t) = [f(t0), f(t1), ..., f(tm−1)]t.(5.24)

align the equation (5.19)-(5.24) into (5.18), we obtain a system of algebraic equation

(5.25)
[
Tm(t) + B(t)I3/2Tm(t) + C(t)(I2Tm(t))

]
A = F(t).
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t Ours (m = 15) Ref.[17](m = 32)

0.0625 8.9369e− 013 4.4517e− 012
0.1875 2.6704e− 009 8.3173e− 008
0.3125 2.9526e− 007 1.5545e− 006
0.4375 6.0751e− 006 9.6917e− 006
0.5625 5.3743e− 005 4.4897e− 005
0.6875 2.7960e− 004 1.8488e− 004
0.8125 9.7785e− 004 5.2730e− 004
0.9375 2.3574e− 003 8.3468e− 004

Table 2: The absolute error in Example 5.3 shown in comparison to the
method of [17].
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Figure 3: This absolute errors of Example 5.3 for various numbers m of the
Taylor basis functions.

This is solved for vector A, and employing (5.21) we obtain the numerical approx-
imation of u(t). The absolute errors with m = 5, 10 and 15 are shown in Fig.3.
Moreover, Table 2 demonstrates the absolute errors in comparison to those in [17].
We can see that the absolute errors are very small, confirming that our method can
work very well.

Example 5.4. Consider the following initial value problem

(5.26) Dαu(t) + etu(t) = 2t+ t2et, t ∈ [0, 1]

with initial condition u(0) = 0.

The exact solution of this problem is in general unknown, but for α = 1 it is
u(t) = t2. The process to obtain an approximate solution is the same in Examples
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Figure 4: A comparison of the approximate solutions for different α values,
with 15 Taylor basis functions.

5.1–5.3. Fig. 4 demonstrates that the approximate solutions appear to converge to
the exact one, for the case α = 1. For more detail see [5].

6. Conclusion

The objective of this paper is to demonstrate numerical solutions of fractional
differential equations with variable coefficients. The technique employs Taylor se-
ries approximations. Moreover, a convergence analysis with the Taylor basis was
also proved. The operational matrix of fractional integration for a Taylor vector
was provided. Furthermore, this method converts initial value problems into lin-
ear systems of algebraic equations. The method is computationally very easy and
provides a structured approach to numerical approximate solutions. Numerical im-
plementations were presented illustrating accuracy, application and efficiency of the
approach.
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