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ABSTRACT. Recently, Andrews introduced partition functions £O(n) and EO(n) where the
function £0(n) denotes the number of partitions of n in which every even part is less than
each odd part and the function %(n) denotes the number of partitions enumerated by
€0(n) in which only the largest even part appears an odd number of times. In this paper
we obtain some congruences modulo 2, 4, 10 and 20 for the partition function €0(n). We
give a simple proof of the first Ramanujan-type congruences €0 (10n +8) = 0 (mod 5)
given by Andrews.

1. Introduction

A partition of a positive integer n is a nonincreasing sequence of positive inte-
gers Ay > Ay > -+ > A\ such that Ay + Ay -+ - + Ay = n. Let p(n) be the number of
partitions of n. For example p(5) = 7. The seven partitions of 5 are 5, 4+ 1, 3+ 2,
3+1+1,24+2+1,24+141+1,14+1+1+14 1. The generating function for

p(n) is given by
- 1
p(n)q" = :
;;; ") (¢ 2)o0

where throughout this paper, for any complex numbers a and | g |< 1 we define

o0

(@;q)n = (L—a)(1—ag)-- (1 —ag"™"), (a;q)ec = [[ (1 — ad").
k=0
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Almost a century back Ramanujan established the following identity [7],

o0 5. 5\5
(1.1) nzz:op(Bn—Hl)q" = 5%3)%:0,

which in fact implies Ramanujan’s congruences for p(n) modulo 5,
(1.2) p(bn+4)=0 (mod 5).

Recently, Andrews [2] introduced the partition function €O(n) which counts the
number of partitions of n in which every even part is less than each odd part. For
example, £0(6) = 7. The seven partitions of 6 it enumerates are 6, 5+ 1, 4 + 2,
34+43,3+1+14+1,2+4+2+2,1+1+1+1+1+1. In [2], Andrews shows that the
generating function for £€0(n) is

o0 _ 1
(13) 2 E0Mm" =

Andrews [2], also defined the partition function EO(n) which counts the number
of partitions enumerated by €0(n) in which only the largest even part appears
an odd number of times. For example, EO(6) = 4. The four partitions of 6 it
enumerates are 6, 3+3,24+2+2,1+1+1+1+1+1. In [2], Andrews shows that
the generating function for €0(n) is

(1.4) i%(n)qn _ (@5
n=0

In Section 3 of this paper, we prove some congruences modulo 2 and 4 for
the partition function €O(n). In Section 4, we give a simple proof of Andrews’
congruences

EO(10n+8) =0 (mod 5),

and we prove some interesting congruences modulo 10 and 20. In the Section 5, we
consider

= n o (a5 ah%
(1.5) ;eoem)q = E PR

where the function €0.(n) counts the elements in the set of partitions which are
enumerated by £O(n) together with the partitions enumerated by £0(n) where
all parts are odd and number of parts is even, i.e, £0.(n) denotes the number of
partitions enumerated by €O(n) in which only the largest even part appears an
odd number of times except when parts are odd and number of parts is even. For
example, £0.(6) = 6. The six partitions of 6 it enumerates are 6, 3+ 3, 2+ 2 + 2,
14+1+1+1+1+1 (which are counted by €O(n)) and 5+ 1 and 3 +1+1+1
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(only counted by EO(n) in which all parts are odd and the number of parts is even).
We prove some arithmetic properties modulo 2 satisfied by €0.(n). All of the
proofs will follow from elementary generating function considerations and g—series
manipulations. The paper concludes with a conjecture on O (n).

2. Preliminaries

We require the following definitions and lemmas to prove the main results in
the next three sections. For | ab |< 1, Ramanujan’s general theta function f(a,b)
is defined as

(2]_) f(a,b): Z an(n+1)/2bn(n71)/2.

n=—oo

Using Jacobi’s triple product identity [1, Theorem 2.8], (2.1) takes the shape
(2.2) f(a,b) = (—a; ab) oo (—b; ab) oo (ab; ab) o -

The special cases of f(a,b) are

= 2 2\2 /.2, 2 2% 2 go
(2.3)  #(q) = flg,q) = nzz_wq” = (4975070 ) = M,
_ 5y _ N iz _ (@507 _ (656%)5%
(2.4) ¥(9) = f(¢:q°) nz::oq N @
(2.5) ¢(—q) = n;m(—l)"q”z = (;Zglio

Lemma 2.1.(Hirschhorn [6, p. 14, Equn. 1.9.4]) We have the following 2-dissection
of $(q),

(2.6) #(q) = d(q") +2q0(d").
Lemma 2.2.(Hirschhorn [5] or Hirschhorn [6, p. 36, Eqn. 3.6.4]) We have,

(_1)n(2n + 1)q(n2+n)/2

M

(2.7) (¢:0)%
0

4", —¢"%) = 3¢f(—¢°,—¢*°) (mod 5).

I
- 3
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Lemma 2.3.(Hirschhorn [6, p. 105, Eqn. 10.7.6]) We have the following beautiful
identity due to Ramanujan,

o

. 4)2 4. 4\2 20
(2.8) <q"’()q°;;(§2)’i o — S (304 1)gt e,

n=—oo

From the Binomial Theorem, for any positive integer, k,

(2.9) (¢":4")5 = (¢®;¢°F ) (mod 5).

3. Congruences Modulo 2 and 4 for EO(n)

In this section we prove some congruences modulo 2 and 4 satisfied by €0(n).
We require the following generating functions to prove congruences for £O0(n).

Theorem 3.1. We have,

(31) ,iw(“”)qn e q(ifq)?)m ’

62 s =2 R,

69 S v = (L

(34) 28(8” T =2 q)&(ggjﬁ;g;ﬁq& FL
65 e =2 R,

(3.6) éw(gn o) = 4(q2;q2)m(?zi Z;‘g)):o(qs; s

Proof. From (1.4), we have
o 4. 4\3
n=0

since there are no terms on the right in which the power of ¢ is odd, we have

EO(2n+1) =0,
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thus by using (2.6), we obtain

_ (@)% o ays (6hdN)5%
Zeo (2n)g (9% = (@5 )°°(q2;q2)‘?.’o¢(q)
(3.7) - EZ; ;’2§;° (6(a") + 209(c°))
It follows that
e (P o (dhdh)
gw(‘m)q (o) (@)= (4:9)% (6% ¢®)%
and
= (0% 42, o (73 6%)%:(4% ¢°)5
2 80U +2)q" = 270 ) = 2

which is our (3.1) and (3.2). We have

(3.8) = 20(¢") (8(q*) + 2q9 (%)) -

It follows that

T @0k @0 (@%@ )L
_ (@*¢)2 (g% a3
(0% (4% ¢®)%

and

x 2. on2 2. 2\T (8. 8)2
3 €08 +4)g" = 2(?qf Z)Q%(qwm‘*) = 2(((1(1? Z)Q“géi. ;Z)goov
n=0 o0 e ’ *
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which is our (3.3) and (3.5). We have

> E0(in + 20" = 2 ()
= 25 ve) = 0l
4. 4\2
— 2 (o)
_ (aa% 4 4 8
(3.9) 2(q2_q2)3 ¥(g") (o(q") + 2q9(¢%)) -
It follows that
o n_ o @) oy oy (4" 4")%
2 B0 + 24" =250 =) = 2y
and
s 2. .,2\2 2. .2 4. 4 8. .,8)2
2?(871—&-6)(1” :4(((1(];3)%:0 (qQ)w(q4) :4<q 34 )oo((éng)%:o(q 5 q )oo7
which is our (3.4) and (3.6). O

We have the following congruences.

Corollary 3.2. For alln >0,

(3.10) E0(2n+1) =0,

(3.11) €0(4n+2)=0 (mod 2),
(3.12) EO(Bn+4)=0 (mod 2),
(3.13) EO(8n+6)=0 (mod 4).

Remark 3.3. The congruences (3.11)—(3.13) were obtained earlier by Andrews et
al. [4]. Andrews et al. [3] introduced a partition function p,(n) which counts the
number of partitions of n in which the parts are distinct and all odd parts are less
than twice the smallest part.

(3.14) > p(n)g" =v(—q),
n=0

where v(q) is a mock theta function. Andrews [2, Corollary 5.2] noted that
(3.15) p,(2n) = EO(2n).

He proved the congruences using the properties of mock theta function, whereas we
use the g-series identities.
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4. Congruences Modulo 5, 10 and 20 for £O(n)

In this section we prove some congruences modulo 5, 10 and 20 for €O(n). In
the next theorem, we give a simple proof of the Andrews’ result [2, Eqn. 1.6],
which can be tracked back to [3, Thrm. 6.7]. He used the properties of mock theta
functions to prove the congruence, whereas we manipulate the g-series identities to
get the result.

Theorem 4.1. For all n > 0,

(4.1) €0(10n+8)=0 (mod 5).

Proof. Applying (2.9) in (1.4), we obtain

> 2. 2\3 2. 203 (.. \3
n=0

(%:9)% (4:9)3%
_ (@@
(42 - (%)= (mod 5).

From (2.7), we have

(4.3) (@:9)% = Jo+J1 (mod 5),

where J; contains terms in which the power of ¢ is congruent to ¢ modulo 5, then
(4.4) (@*¢*)% = Jg +J5  (mod 5),

where J; contains terms in which the power of ¢ is congruent to ¢ modulo 5. Sub-
stituting (4.3) and (4.4) in (4.2), we have

(4.5) S E0(2n)g" = (5%“0 ST+ J3)  (mod 5).
n=0 74 )OO

There are no terms on the right in which the power of ¢ is 4 modulo 5, so

i EO0(2(5n+4))¢""t* =0 (mod 5),

n=0
from which we deduce (4.1). a

In the next theorem, we derive two congruences modulo 10 from the generating
functions (3.2) and (3.5).

Theorem 4.2. For all n > 0,

20n +18) =0 (mod 10),
40n 4+ 28) =0 (mod 10).

(4.6) o

(
(4.7) £0(
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Proof. Using (2.9) in (3.2), we have

o0
— 1 2. 2\2 [ 8. 82
n=0 (¢:9)2% (7% ¢ o
_ @)% (6% 0% (¢% )%
q:9q

(4.8) =

Replacing ¢ by ¢? in (2.8), we have

2. ,2)2 8. ,8)2 e
(19) ’q(q)fq(f) ) S (304 1) = RE + R+ RS (mod 5),
I oo

n=-—oo

where R contains terms in which the power of ¢ is congruent to ¢ modulo 5.
Substituting (4.3) and (4.9) in (4.8), we obtain

(4.10) Y E0(n+2)q" =2 (Jo+J1) (Ry + R; + R3) (mod 10).
n=0

(4°;¢°) oo

There are no terms on the right in which the power of ¢ is 4 modulo 5, so

D EO(4(Bn+4)+2)¢" ™ =0 (mod 10),

n=0

from which we deduce (4.6). Using (2.9) in (3.5), we have

> 2. ,.2\5 2. ,2\2 8. .,8)\2

Z%(8n+4)qn -9 (q5 aq4)oo4 5 (q % 4@(:(4(1 5 4 )oo

= (a)3(a% a3 (a5

— 2(gh g (0% 0*)%  (6%d%)3%(d% ¢%)5%
B () E N (/Y S (VA IS

(411) ottt 900 (SO (g )

' e 5 ) ()0 (%40 moe -

From (2.7), we have
(4.12) (¢"q")% = Ji* + Ji*  (mod 5),
where J* contains terms in which the power of ¢ is congruent to ¢ modulo 5.
Substituting (4.9) and (4.12) in (4.11), we obtain
10. ,10

0o
FaG) n __ q ;4 ok ok * * *
(413) S €O +4)g" = z(qs;;s)m(qzo);o;%)m (Jo* + J5°) (R, + RY + RY)

n=0

(mod 10).
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There are no terms on the right in which the power of ¢ is 3 modulo 5, so

oo

Z 8(5n +3) +4)¢°" ™3 =0 (mod 10),

from which we deduce (4.7). O

In the next theorem, we derive a congruences modulo 20 from the generating
function (3.6).

Theorem 4.3. For all n > 0,

(4.14) €0(40n +38) =0 (mod 20).

Proof. Using (2.9) in (3.6), we have

oo

1 (g%99)5% (%6365 ¢%)
z:: (8n+6)q (q;q)io(q,q)oo (¢*q*) o
b (@365 675 (0% )35 (6% ¢%)E
(¢a)3%  (¢%56%)s (4% 4") oo

1 1 )3 (0% %)5 (% 10°)%
(4.15) =47 (4 q(;f;)i) (@:a (q{ (g 0:” (mod 20)
From (2.8), we have
(4.16) W: i (Bn+ 1) 2" = Ry+ Ry + Ry (mod 5),

where R; contains terms in which the power of g is congruent to ¢ modulo 5. Sub-
stituting (4.9) and (4.16) in (4.15), we obtain

S 1
(4.17) > €0(8n +6)q" E4W (Ro + Ro + R3) (R + R + R})
n=0 ’ o0

(mod 20).

There are no terms on the right in which the power of ¢ is 4 modulo 5, so

oo

Z 8(5n +4) +6)¢"" ™ =0 (mod 20),

from which we deduce (4.14). O
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5. Congruences for £O0.(n)

In this section we prove some congruences modulo 2 for £€0.(n).

Theorem 5.1.

- (g% ¢")3
5.1 80, (4n)q" = —F L2
o1 20" = e T,
- (0% 432 (¢% ¢*)2
5.2 €O, (4n + 2)g" = 2 ES EN
2 ,;) ( ) (03, (¢* ¢*) oo

Proof. From (1.5), we have

(g% q%)2%
(¢% %)%

since there are no terms on the right in which the power of ¢ is odd, we have

Z EOc(n)q" =
n=0

€0.(2n+1) =0,

by using (2.6), we obtain

e 2. ,.2\2 4. 4\2
S e0,(2n)gt = T _ 2 o @500
n=0

(:9)% (g% 4%)3%
4. 4\2
(5.3) - EZZ;Z (6(a") + 200(a®))
It follows that
— (%P o (¢*;4")3,
€o, n_ \4°4 Joo - 94,49 Joo
nZ:O 0. (dn)e (¢ 9)% #e) (4 4)3. (¢ ¢*)3

and

= N (/T ) N (/Y P (/Y A
€O, (4 — 0¥ Joo -
Z (n+2)q" =2 (45 9)3 vig) =2 (:0)2. (% ¢%) o

;
n=0

which is our (5.1) and (5.2).
We have the following congruences.
Corollary 5.2. For alln > 0,

(5.4) £0.(2n+1) =0,
(5.5) €0.(4n+2)=0 (mod 2).
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6. Conclusion

Andrews [2, Problem 4], proposed to further investigate the properties of €0 (n).
We conclude the paper with the following conjecture. Using maple, we found the
following congruences hold up to n = 2000.

Conjecture 6.1. For alln >0,

(6.1) €O (50n+18) =0 (mod 20),
(6.2) €O (50n +28) =0 (mod 20),
(6.3) €O (50n +38) =0 (mod 20),
(6.4) €O (50n +48) =0 (mod 20).
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