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Abstract. Recently, Andrews introduced partition functions EO(n) and EO(n) where the

function EO(n) denotes the number of partitions of n in which every even part is less than

each odd part and the function EO(n) denotes the number of partitions enumerated by

EO(n) in which only the largest even part appears an odd number of times. In this paper

we obtain some congruences modulo 2, 4, 10 and 20 for the partition function EO(n). We

give a simple proof of the first Ramanujan-type congruences EO (10n+ 8) ≡ 0 (mod 5)

given by Andrews.

1. Introduction

A partition of a positive integer n is a nonincreasing sequence of positive inte-
gers λ1 ≥ λ2 ≥ · · · ≥ λk such that λ1 + λ2 · · ·+ λk = n. Let p(n) be the number of
partitions of n. For example p(5) = 7. The seven partitions of 5 are 5, 4 + 1, 3 + 2,
3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. The generating function for
p(n) is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
,

where throughout this paper, for any complex numbers a and | q |< 1 we define

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1), (a; q)∞ =

∞∏
k=0

(1− aqk).
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Almost a century back Ramanujan established the following identity [7],

(1.1)
∞∑

n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

,

which in fact implies Ramanujan’s congruences for p(n) modulo 5,

(1.2) p(5n+ 4) ≡ 0 (mod 5).

Recently, Andrews [2] introduced the partition function EO(n) which counts the
number of partitions of n in which every even part is less than each odd part. For
example, EO(6) = 7. The seven partitions of 6 it enumerates are 6, 5 + 1, 4 + 2,
3 + 3, 3 + 1+ 1+ 1, 2 + 2+ 2, 1 + 1+ 1+ 1+ 1+ 1. In [2], Andrews shows that the
generating function for EO(n) is

(1.3)
∞∑

n=0

EO(n)qn :=
1

(1− q)(q2; q2)∞
.

Andrews [2], also defined the partition function EO(n) which counts the number
of partitions enumerated by EO(n) in which only the largest even part appears
an odd number of times. For example, EO(6) = 4. The four partitions of 6 it
enumerates are 6, 3+ 3, 2+ 2+ 2, 1+ 1+ 1+ 1+ 1+ 1. In [2], Andrews shows that
the generating function for EO(n) is

(1.4)

∞∑
n=0

EO(n)qn =
(q4; q4)3∞
(q2; q2)2∞

.

In Section 3 of this paper, we prove some congruences modulo 2 and 4 for
the partition function EO(n). In Section 4, we give a simple proof of Andrews’
congruences

EO (10n+ 8) ≡ 0 (mod 5),

and we prove some interesting congruences modulo 10 and 20. In the Section 5, we
consider

(1.5)

∞∑
n=0

EOe(n)q
n :=

(q4; q4)2∞
(q2; q2)2∞

,

where the function EOe(n) counts the elements in the set of partitions which are
enumerated by EO(n) together with the partitions enumerated by EO(n) where
all parts are odd and number of parts is even, i.e, EOe(n) denotes the number of
partitions enumerated by EO(n) in which only the largest even part appears an
odd number of times except when parts are odd and number of parts is even. For
example, EOe(6) = 6. The six partitions of 6 it enumerates are 6, 3 + 3, 2 + 2 + 2,
1 + 1 + 1 + 1 + 1 + 1 (which are counted by EO(n)) and 5 + 1 and 3 + 1 + 1 + 1
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(only counted by EO(n) in which all parts are odd and the number of parts is even).
We prove some arithmetic properties modulo 2 satisfied by EOe(n). All of the
proofs will follow from elementary generating function considerations and q–series
manipulations. The paper concludes with a conjecture on EO(n).

2. Preliminaries

We require the following definitions and lemmas to prove the main results in
the next three sections. For | ab |< 1, Ramanujan’s general theta function f(a, b)
is defined as

(2.1) f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2.

Using Jacobi’s triple product identity [1, Theorem 2.8], (2.1) takes the shape

(2.2) f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

The special cases of f(a, b) are

(2.3) ϕ(q) := f(q, q) =
∞∑

n=−∞
qn

2

= (−q; q2)2∞(q2; q2)∞ =
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
,

(2.4) ψ(q) := f(q, q3) =
∞∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
(q2; q2)2∞
(q; q)∞

,

(2.5) ϕ(−q) :=
∞∑

n=−∞
(−1)nqn

2

=
(q; q)2∞
(q2; q2)∞

.

Lemma 2.1.(Hirschhorn [6, p. 14, Eqn. 1.9.4]) We have the following 2-dissection
of ϕ(q),

(2.6) ϕ(q) = ϕ(q4) + 2qψ(q8).

Lemma 2.2.(Hirschhorn [5] or Hirschhorn [6, p. 36, Eqn. 3.6.4]) We have,

(q; q)3∞ =
∞∑

n=0

(−1)n(2n+ 1)q(n
2+n)/2(2.7)

≡ f(−q10,−q15)− 3qf(−q5,−q20) (mod 5).
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Lemma 2.3.(Hirschhorn [6, p. 105, Eqn. 10.7.6]) We have the following beautiful
identity due to Ramanujan,

(2.8)
(q; q)2∞(q4; q4)2∞

(q2; q2)∞
=

∞∑
n=−∞

(3n+ 1)q3n
2+2n.

From the Binomial Theorem, for any positive integer, k,

(2.9) (qk; qk)5∞ ≡ (q5k; q5k)∞ (mod 5).

3. Congruences Modulo 2 and 4 for EO(n)

In this section we prove some congruences modulo 2 and 4 satisfied by EO(n).
We require the following generating functions to prove congruences for EO(n).

Theorem 3.1. We have,

∞∑
n=0

EO(4n)qn =
(q4; q4)5∞

(q; q)2∞(q8; q8)2∞
,(3.1)

∞∑
n=0

EO(4n+ 2)qn = 2
(q2; q2)2∞(q8; q8)2∞
(q; q)2∞(q4; q4)∞

,(3.2)

∞∑
n=0

EO(8n)qn =
(q2; q2)5∞(q4; q4)3∞
(q; q)5∞(q8; q8)2∞

,(3.3)

∞∑
n=0

EO(8n+ 2)qn = 2
(q4; q4)7∞

(q; q)3∞(q2; q2)∞(q8; q8)2∞
,(3.4)

∞∑
n=0

EO(8n+ 4)qn = 2
(q2; q2)7∞(q8; q8)2∞
(q; q)5∞(q4; q4)3∞

,(3.5)

∞∑
n=0

EO(8n+ 6)qn = 4
(q2; q2)∞(q4; q4)∞(q8; q8)2∞

(q; q)3∞
.(3.6)

Proof. From (1.4), we have

∞∑
n=0

EO(n)qn =
(q4; q4)3∞
(q2; q2)2∞

,

since there are no terms on the right in which the power of q is odd, we have

EO(2n+ 1) = 0,
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thus by using (2.6), we obtain

∞∑
n=0

EO(2n)qn =
(q2; q2)3∞
(q; q)2∞

= (q2; q2)3∞
(q4; q4)2∞
(q2; q2)5∞

ϕ(q)

=
(q4; q4)2∞
(q2; q2)2∞

(
ϕ(q4) + 2qψ(q8)

)
.(3.7)

It follows that

∞∑
n=0

EO(4n)qn =
(q2; q2)2∞
(q; q)2∞

ϕ(q2) =
(q4; q4)5∞

(q; q)2∞(q8; q8)2∞

and

∞∑
n=0

EO(4n+ 2)qn = 2
(q2; q2)2∞
(q; q)2∞

ψ(q4) = 2
(q2; q2)2∞(q8; q8)2∞
(q; q)2∞(q4; q4)∞

,

which is our (3.1) and (3.2). We have

∞∑
n=0

EO(4n)qn =
(q2; q2)2∞
(q; q)2∞

ϕ(q2)

= (q2; q2)2∞ϕ(q
2)
(q4; q4)2∞
(q2; q2)5∞

ϕ(q)

=
(q4; q4)2∞
(q2; q2)3∞

ϕ(q2)ϕ(q)

=
(q4; q4)2∞
(q2; q2)3∞

ϕ(q2)
(
ϕ(q4) + 2qψ(q8)

)
.(3.8)

It follows that

∞∑
n=0

EO(8n)qn =
(q2; q2)2∞
(q; q)3∞

ϕ(q)ϕ(q2)

=
(q2; q2)2∞
(q; q)3∞

(q2; q2)5∞
(q; q)2∞(q4; q4)2∞

(q4; q4)5∞
(q2; q2)2∞(q8; q8)2∞

=
(q2; q2)5∞(q4; q4)3∞
(q; q)5∞(q8; q8)2∞

and

∞∑
n=0

EO(8n+ 4)qn = 2
(q2; q2)2∞
(q; q)3∞

ϕ(q)ψ(q4) = 2
(q2; q2)7∞(q8; q8)2∞
(q; q)5∞(q4; q4)3∞

,
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which is our (3.3) and (3.5). We have

∞∑
n=0

EO(4n+ 2)qn = 2
(q2; q2)2∞
(q; q)2∞

ψ(q4)

= 2(q2; q2)2∞ψ(q
4)
(q4; q4)2∞
(q2; q2)5∞

ϕ(q)

= 2
(q4; q4)2∞
(q2; q2)3∞

ψ(q4)ϕ(q)

= 2
(q4; q4)2∞
(q2; q2)3∞

ψ(q4)
(
ϕ(q4) + 2qψ(q8)

)
.(3.9)

It follows that
∞∑

n=0

EO(8n+ 2)qn = 2
(q2; q2)2∞
(q; q)3∞

ψ(q2)ϕ(q2) = 2
(q4; q4)7∞

(q; q)3∞(q2; q2)∞(q8; q8)2∞

and
∞∑

n=0

EO(8n+ 6)qn = 4
(q2; q2)2∞
(q; q)3∞

ψ(q2)ψ(q4) = 4
(q2; q2)∞(q4; q4)∞(q8; q8)2∞

(q; q)3∞
,

which is our (3.4) and (3.6). 2

We have the following congruences.

Corollary 3.2. For all n ≥ 0,

EO(2n+ 1) = 0,(3.10)

EO(4n+ 2) ≡ 0 (mod 2),(3.11)

EO(8n+ 4) ≡ 0 (mod 2),(3.12)

EO(8n+ 6) ≡ 0 (mod 4).(3.13)

Remark 3.3. The congruences (3.11)–(3.13) were obtained earlier by Andrews et
al. [4]. Andrews et al. [3] introduced a partition function pν(n) which counts the
number of partitions of n in which the parts are distinct and all odd parts are less
than twice the smallest part.

(3.14)
∞∑

n=0

pν(n)q
n = ν(−q),

where ν(q) is a mock theta function. Andrews [2, Corollary 5.2] noted that

(3.15) pν(2n) = EO(2n).

He proved the congruences using the properties of mock theta function, whereas we
use the q-series identities.
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4. Congruences Modulo 5, 10 and 20 for EO(n)

In this section we prove some congruences modulo 5, 10 and 20 for EO(n). In
the next theorem, we give a simple proof of the Andrews’ result [2, Eqn. 1.6],
which can be tracked back to [3, Thrm. 6.7]. He used the properties of mock theta
functions to prove the congruence, whereas we manipulate the q-series identities to
get the result.

Theorem 4.1. For all n ≥ 0,

(4.1) EO (10n+ 8) ≡ 0 (mod 5).

Proof. Applying (2.9) in (1.4), we obtain

∞∑
n=0

EO(2n)qn =
(q2; q2)3∞
(q; q)2∞

=
(q2; q2)3∞(q; q)3∞

(q; q)5∞

≡ (q2; q2)3∞(q; q)3∞
(q5; q5)∞

(mod 5).(4.2)

From (2.7), we have

(4.3) (q; q)3∞ ≡ J0 + J1 (mod 5),

where Ji contains terms in which the power of q is congruent to i modulo 5, then

(4.4) (q2; q2)3∞ ≡ J∗
0 + J∗

2 (mod 5),

where J∗
i contains terms in which the power of q is congruent to i modulo 5. Sub-

stituting (4.3) and (4.4) in (4.2), we have

∞∑
n=0

EO(2n)qn ≡ 1

(q5; q5)∞
(J0 + J1) (J

∗
0 + J∗

2 ) (mod 5).(4.5)

There are no terms on the right in which the power of q is 4 modulo 5, so

∞∑
n=0

EO(2(5n+ 4))q5n+4 ≡ 0 (mod 5),

from which we deduce (4.1). 2

In the next theorem, we derive two congruences modulo 10 from the generating
functions (3.2) and (3.5).

Theorem 4.2. For all n ≥ 0,

EO(20n+ 18) ≡ 0 (mod 10),(4.6)

EO(40n+ 28) ≡ 0 (mod 10).(4.7)
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Proof. Using (2.9) in (3.2), we have

∞∑
n=0

EO(4n+ 2)qn = 2
1

(q; q)2∞

(q2; q2)2∞(q8; q8)2∞
(q4; q4)∞

= 2
(q; q)3∞
(q; q)5∞

(q2; q2)2∞(q8; q8)2∞
(q4; q4)∞

≡ 2
(q; q)3∞
(q5; q5)∞

(q2; q2)2∞(q8; q8)2∞
(q4; q4)∞

(mod 10).(4.8)

Replacing q by q2 in (2.8), we have

(4.9)
(q2; q2)2∞(q8; q8)2∞

(q4; q4)∞
=

∞∑
n=−∞

(3n+ 1)q6n
2+4n ≡ R∗

0 +R∗
1 +R∗

2 (mod 5),

where R∗
i contains terms in which the power of q is congruent to i modulo 5.

Substituting (4.3) and (4.9) in (4.8), we obtain

∞∑
n=0

EO(4n+ 2)qn ≡ 2
1

(q5; q5)∞
(J0 + J1) (R

∗
0 +R∗

1 +R∗
2) (mod 10).(4.10)

There are no terms on the right in which the power of q is 4 modulo 5, so

∞∑
n=0

EO(4(5n+ 4) + 2)q5n+4 ≡ 0 (mod 10),

from which we deduce (4.6). Using (2.9) in (3.5), we have

∞∑
n=0

EO(8n+ 4)qn = 2
(q2; q2)5∞

(q; q)5∞(q4; q4)2∞

(q2; q2)2∞(q8; q8)2∞
(q4; q4)∞

= 2(q4; q4)3∞
(q2; q2)5∞

(q; q)5∞(q4; q4)5∞

(q2; q2)2∞(q8; q8)2∞
(q4; q4)∞

≡ 2(q4; q4)3∞
(q10; q10)∞

(q5; q5)∞(q20; q20)∞

(q2; q2)2∞(q8; q8)2∞
(q4; q4)∞

(mod 10).(4.11)

From (2.7), we have

(4.12) (q4; q4)3∞ ≡ J∗∗
0 + J∗∗

4 (mod 5),

where J∗∗
i contains terms in which the power of q is congruent to i modulo 5.

Substituting (4.9) and (4.12) in (4.11), we obtain

∞∑
n=0

EO(8n+ 4)qn ≡ 2
(q10; q10)∞

(q5; q5)∞(q20; q20)∞
(J∗∗

0 + J∗∗
4 ) (R∗

0 +R∗
1 +R∗

2)(4.13)

(mod 10).
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There are no terms on the right in which the power of q is 3 modulo 5, so

∞∑
n=0

EO(8(5n+ 3) + 4)q5n+3 ≡ 0 (mod 10),

from which we deduce (4.7). 2

In the next theorem, we derive a congruences modulo 20 from the generating
function (3.6).

Theorem 4.3. For all n ≥ 0,

(4.14) EO(40n+ 38) ≡ 0 (mod 20).

Proof. Using (2.9) in (3.6), we have

∞∑
n=0

EO(8n+ 6)qn = 4
1

(q; q)3∞

(q4; q4)2∞
(q2; q2)∞

(q2; q2)2∞(q8; q8)2∞
(q4; q4)∞

= 4
1

(q; q)5∞

(q; q)2∞(q2; q2)4∞
(q2; q2)∞

(q2; q2)2∞(q8; q8)2∞
(q4; q4)∞

≡ 4
1

(q5; q5)∞

(q; q)2∞(q2; q2)4∞
(q2; q2)∞

(q2; q2)2∞(q8; q8)2∞
(q4; q4)∞

(mod 20).(4.15)

From (2.8), we have

(4.16)
(q; q)2∞(q4; q4)2∞

(q2; q2)∞
=

∞∑
n=−∞

(3n+ 1)q3n
2+2n ≡ R0 +R2 +R3 (mod 5),

where Ri contains terms in which the power of q is congruent to i modulo 5. Sub-
stituting (4.9) and (4.16) in (4.15), we obtain

∞∑
n=0

EO(8n+ 6)qn ≡ 4
1

(q5; q5)∞
(R0 +R2 +R3) (R

∗
0 +R∗

1 +R∗
2)(4.17)

(mod 20).

There are no terms on the right in which the power of q is 4 modulo 5, so

∞∑
n=0

EO(8(5n+ 4) + 6)q5n+4 ≡ 0 (mod 20),

from which we deduce (4.14). 2
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5. Congruences for EOe(n)

In this section we prove some congruences modulo 2 for EOe(n).

Theorem 5.1.

∞∑
n=0

EOe(4n)q
n =

(q4; q4)5∞
(q; q)3∞(q8; q8)2∞

,(5.1)

∞∑
n=0

EOe(4n+ 2)qn = 2
(q2; q2)2∞(q8; q8)2∞
(q; q)3∞(q4; q4)∞

.(5.2)

Proof. From (1.5), we have

∞∑
n=0

EOe(n)q
n =

(q4; q4)2∞
(q2; q2)2∞

,

since there are no terms on the right in which the power of q is odd, we have

EOe(2n+ 1) = 0,

by using (2.6), we obtain

∞∑
n=0

EOe(2n)q
n =

(q2; q2)2∞
(q; q)2∞

= (q2; q2)2∞
(q4; q4)2∞
(q2; q2)5∞

ϕ(q)

=
(q4; q4)2∞
(q2; q2)3∞

(
ϕ(q4) + 2qψ(q8)

)
.(5.3)

It follows that

∞∑
n=0

EOe(4n)q
n =

(q2; q2)2∞
(q; q)3∞

ϕ(q2) =
(q4; q4)5∞

(q; q)3∞(q8; q8)2∞

and

∞∑
n=0

EOe(4n+ 2)qn = 2
(q2; q2)2∞
(q; q)3∞

ψ(q4) = 2
(q2; q2)2∞(q8; q8)2∞
(q; q)3∞(q4; q4)∞

,

which is our (5.1) and (5.2). 2

We have the following congruences.

Corollary 5.2. For all n ≥ 0,

EOe(2n+ 1) = 0,(5.4)

EOe(4n+ 2) ≡ 0 (mod 2).(5.5)
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6. Conclusion

Andrews [2, Problem 4], proposed to further investigate the properties of EO (n).
We conclude the paper with the following conjecture. Using maple, we found the
following congruences hold up to n = 2000.

Conjecture 6.1. For all n ≥ 0,

EO (50n+ 18) ≡ 0 (mod 20),(6.1)

EO (50n+ 28) ≡ 0 (mod 20),(6.2)

EO (50n+ 38) ≡ 0 (mod 20),(6.3)

EO (50n+ 48) ≡ 0 (mod 20).(6.4)
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