KYUNGPOOK Math. J. 61(2021), 33-48 https://doi.org/10.5666/KMJ.2021.61.1.33 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On Weakly Prime and Weakly 2-absorbing Modules over Noncommutative Rings

NICO J. GROENEWALD Department of Mathematics, Nelson Mandela University, Port Elizabeth, South Africa e-mail: nico.groenewald@mandela.ac.za

ABSTRACT. Most of the research on weakly prime and weakly 2-absorbing modules is for modules over commutative rings. Only scatterd results about these notions with regard to non-commutative rings are available. The motivation of this paper is to show that many results for the commutative case also hold in the non-commutative case. Let R be a non-commutative ring with identity. We define the notions of a weakly prime and a weakly 2-absorbing submodules of R and show that in the case that R commutative, the definition of a weakly 2-absorbing submodule coincides with the original definition of A. Darani and F. Soheilnia. We give an example to show that in general these two notions are different. The notion of a weakly m-system is introduced and the weakly prime radical is characterized interms of weakly m-systems. Many properties of weakly prime submodules and weakly 2-absorbing submodules are proved which are similar to the results for commutative rings. Amongst these results we show that for a proper submodule N_i of an R_i -module M_i , for i = 1, 2, if $N_1 \times N_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$, then N_i is a weakly 2-absorbing submodule of M_i for i = 1, 2

1. Introduction

In 2007 Badawi [3] introduced the concept of 2-absorbing ideals of commutative rings with identity, which is a generalization of prime ideals, and investigated some properties. He defined a 2-absorbing ideal P of a commutative ring R with identity to be a proper ideal of R such that if $a, b, c \in R$ and $abc \in P$, then $ab \in P$ or $bc \in P$ or $ac \in P$. In 2011, Darani and Soheilnia [7] introduced the concepts of 2-absorbing and weakly 2-absorbing submodules of modules over commutative rings with identities. A proper submodule P of a module M over a commutative ring R with identity is said to be a 2-absorbing submodule (weakly 2-absorbing

Received March 22, 2020; revised September 8, 2020; accepted October 8, 2020.

²⁰¹⁰ Mathematics Subject Classification: primary 16D25, secondary 16D80, 16N60. Key words and phrases: 2-absorbing submodule, weakly 2-absorbing submodule, prime

submodule, weakly prime submodule, weakly prime radical.

submodule) of M if whenever $a, b \in R$ and $m \in M$ with $abm \in P(0 \neq abm \in P)$, then $abM \subseteq P$ or $am \in P$ or $bm \in P$. One can see that 2-absorbing and weakly 2-absorbing submodules are generalizations of prime submodules. Moreover, it is obvious that 2-absorbing ideals are special cases of 2-absorbing submodules.

Throughout this paper, all rings are associative with identity elements (not necessarily commutative) and modules are unitary left modules. Let R be a ring and M be an R-module. We write $N \leq M$, if N is a submodule of M. In recent years the study of the absorbing properties of rings and modules, and related notions, have been topics of interest in ring and module theory. In [11] the notion of 2-absorbing modules over non-commutative rings was introduced. In this paper we study the notion of weakly prime and weakly 2-absorbing modules over non-commutative rings. We prove basic properties of weakly 2-absorbing submodules. In particular, we show that If R is a commutative ring then the notion of a weakly 2-absorbing submodule coincides with that of the original definition introduced by Darani and Soheilnia in [7]. For an R-module M and a submodule N of M we have $(N :_R M) = \{r \in R : rM \subseteq N\}$.

Following [9] a proper ideal P of the ring R is 2-absorbing if $aRbRc \subseteq P$ implies $ab \in P$ or $ac \in P$ or $bc \in P$ for a, b and c elements of R. Following [11] a proper submodule N of the R-module M is a 2-absorbing submodule of M if $aRbRx \subseteq N$ implies $ab \in (N :_R M)$ or $ax \in N$ or $bx \in N$ for $a, b \in R$ and $x \in M$. From [8] a proper submodule P of M is called a prime submodule of M if, for every ideal A of R and every submodule N of M, $AN \subseteq P$ implies either $N \subseteq P$ or $AM \subseteq P$. This is equivalent to $aRx \subseteq P$ implies $a \in (P : M)$ or $x \in P$ for $a \in R$ and $x \in M$. It is clear that a submodule N of an R-module M is prime if and only $P = (N :_R M)$ is a prime ideal of R.

From [10] A proper ideal P of the ring R is weakly prime if $0 \neq aRb \subseteq P$ implies $a \in P$ or $b \in P$ for a and b elements of R.

Definition 1.1.([1, Definition 3.3]) Let M be a left R-module. A proper submodule N of M is called a weakly prime submodule of M if whenever $r \in R$ and $m \in M$ with $0 \neq rRm \subseteq N$ then either $m \in N$ or $r \in (N :_R M)$.

Remark 1.2. Let p and q be two prime numbers. In the \mathbb{Z} -module $\mathbb{Z}pq$, the submodule (0) is weakly prime, but not prime.

Compare the next Theorem with [2, Corollary 2.3].

Theorem 1.3. Let R be a ring, and M an R-module and N a weakly prime submodule of M. If N is not a prime submodule of M, then for any subset P of R such that $P \subseteq (N :_R M)$ we have PN = 0. In particular $(N :_R M)N = 0$.

Proof. Suppose P is a subset of R such that $P \subseteq (N :_R M)$. Suppose $PN \neq 0$. We show that N is prime. Let $r \in R$ and $m \in M$ be such that $rRm \subseteq N$. If $rRm \neq 0$, then $r \in (N :_R M)$ or $m \in N$ since N is weakly prime. So assume rRm = 0. First assume $rN \neq 0$, say $rn \neq 0$ for some $n \in N$. Now $0 \neq rn \in rR(n+m) \subseteq N$ and N weakly prime, gives $r \in (N :_R M)$ or $(n+m) \in N$. Hence $r \in (N :_R M)$ or $m \in N$ since $n \in N$. So we can assume that rN = 0. Now suppose that $Pm \neq 0$,

say $sm \neq 0$ for $s \in P \subseteq (N :_R M)$. We have $0 \neq sm \in (r+s)Rm \subseteq N$. Hence $(r+s) \in (N :_R M)$ or $m \in N$. So $r \in (N :_R M)$ or $m \in N$. Hence we can assume that Pm = 0. Since $PN \neq 0$, there exists $t \in P$ and $n \in N$ such that $tn \neq 0$. Now we have $0 \neq tn \in (r+t)R(n+m) \subseteq N$. Again, since N is weakly prime, we get $(r+t) \in (N :_R M)$ or $(m+n) \in N$. Hence $r \in (N :_R M)$ or $m \in N$. Thus N is a prime submodule. \Box

Compare (1) \Leftrightarrow (2) of the next Theorem with [2, Theorem 2.4]

Theorem 1.4. Let N be a proper submodule of a left R-module M. Then the following are equivalent:

- (1) N is a weakly prime submodule of M.
- (2) For a left ideal P of R and submodule D of M with $0 \neq PD \subseteq N$, either $P \subseteq (N :_R M)$ or $D \subseteq N$.
- (3) For any element $a \in R$ and $L \leq M$, if $0 \neq aRL \subseteq N$, then $L \subseteq N$ or $a \in (N :_R M)$.
- (4) For any right ideal I of R and $L \leq M$, if $0 \neq IL \subseteq N$, then $L \subseteq N$ or $I \subseteq (N :_R M)$.
- (5) For any element $a \in R$ and $L \leq M$, if $0 \neq RaRL \subseteq N$, then $L \subseteq N$ or $a \in (N :_R M)$.
- (6) For any element $a \in R$ and $L \leq M$, if $0 \neq RaL \subseteq N$ then $L \subseteq N$ or $a \in (N :_R M)$.

Proof.

 $(1) \Rightarrow (2)$ Suppose that N is a weakly prime submodule of M. If N is prime, then the result is clear from [5, Proposition 1.1]. So we can assume that N is weakly prime that is not prime. Let $0 \neq PD \subseteq N$ with $x \in D - N$. We show that $P \subseteq (N :_R M)$. Let $r \in P$. Now $rRx \subseteq rD \subseteq N$. If $0 \neq rRx$, then N weakly prime gives $r \in (N :_R M)$. So assume that rRx = 0. First suppose that $rD \neq 0$, say $rd \neq 0$ where $d \in D$. If $d \notin N$, then since $0 \neq rRd \subseteq N$ and N weakly prime $r \in (N :_R M)$. If $d \in N$, then $rR(d + x) = rRd \subseteq N$, so $r \in (N :_R M)$ or $(d + x) \in N$. Thus, $r \in (N :_R M)$; hence $P \subseteq (N :_R M)$. So we can assume that rD = 0. Suppose that $Px \neq 0$, say $ax \neq 0$ where $a \in P$. Now $0 \neq aRx \subseteq N$ and N weakly prime gives $a \in (N :_R M)$. As $(r+a)Rx = aRx \subseteq N$, we get $r \in (N :_R M)$, so $P \subseteq (N :_R M)$. Therefore, we can assume that Px = 0. Since $PD \neq 0$, there exist $b \in P$ and $d_1 \in D$ such that $bd_1 \neq 0$. As $(N :_R M)N = 0$ (by Theorem 1.3) and $0 \neq b(d_1 + x) = bd_1 \in N$ we can divide the proof into the following two cases: **Case 1.** $b \in (N :_R M)$ and $(d_1+x) \notin N$. Since $0 \neq (r+b)R(d_1+x) = bRd_1 \subseteq$ N, we obtain $(r+b) \in (N :_R M)$, so $r \in (N :_R M)$. Hence $P \subseteq (N :_R M)$. **Case 2.** $b \notin (N :_R M)$ and $(d_1 + x) \in N$. As $0 \neq bRd_1 \subseteq N$ we have $d_1 \in N$, so $x \in N$ which is a contradiction. Thus $P \subseteq (N :_R M)$.

- (2) \Rightarrow (1) Suppose that $0 \neq sRm \subseteq N$ where $s \in R$ and $m \in M$. Take I = Rs and D = Rm. Then $0 \neq ID \subseteq N$, so either $I \subseteq (N :_R M)$ or $D \subseteq N$; hence either $r \in (N :_R M)$ or $m \in N$. Thus N is weakly prime.
- (2) \Rightarrow (3) Let $a \in R$ and $L \leq M$ such that $0 \neq aRL \subseteq N$. Now $0 \neq RaL \subseteq N$ and from 2. $L \subseteq N$ or $a \in Ra \subseteq (N :_R M)$.
- (3) \Rightarrow (2) Let *P* be a left ideal of *R* and *D* a submodule of *M* with $0 \neq PD \subseteq N$. If $D \subseteq N$, then we are done. So suppose $D \notin N$. We will show that $P \subseteq (N :_R M)$. Let $a \in P$. Hence $aRD \subseteq N$. If $aRD \neq 0$ then it follows from (3) that $a \in (N :_R M)$ and we have $P \subseteq (N :_R M)$. So suppose aRD = 0. Because $PD \neq 0$, there exists $p \in P$ such that $pRD \neq 0$. We now have $0 \neq pRD = (a + p)RD \subseteq N$. It follows from (3) that $(a + p) \in (N :_R M)$ and we have $P \subseteq (N :_R M)$.

 $(3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$ is now easy to see.

Remark 1.5. From [5] we know that if N is a prime submodule of an R-module M, then $(N :_R M)$ is a prime ideal of R. Suppose that N is weakly prime which is not prime. Contrary to what happens for a prime submodules, the ideal $(N :_R M)$ is not, in general, a weakly prime ideal of R. For example, let M denote the cyclic \mathbb{Z} -module $\mathbb{Z}/8\mathbb{Z}$. Take $N = \{0\}$. Certainly N is a weakly prime submodule of M, but $(N :_R M) = 8Z$ is not a weakly prime ideal of R, but we have the following result:

Proposition 1.6. Let R be a ring with identity M a faithful R-module, and N a weakly prime submodule of M. Then $(N :_R M)$ is a weakly prime ideal of R.

Proof. Assume that M is a faithful R module and let $0 \neq aRb \subseteq (N :_R M)$. Since M is a faithful R module we have $0 \neq aRbM \subseteq N$. It follows that $0 \neq (RaR)(RbR)M \subseteq N$. From Theorem 1.4 we have $(RaR)M \subseteq N$ or $(RbR)M \subseteq N$. Hence $a \in (N :_R M)$ or $b \in (N :_R M)$ and it follows that $(N :_R M)$ is a weakly prime ideal. \Box

From [12] we have that M is a multiplication module over a non-commutative ring if and only if (N:M)M = N for each submodule N of M.

Proposition 1.7. Let M be a multiplication R-module. If (N : M) is a weakly prime ideal of R, then N is a weakly prime submodule of M.

Proof. Let $0 \neq aRm \subseteq N$ with $m \in M$ and $a \notin (N : M)$. Since M is a multiplication module there is an ideal I of R such that Rm = IM, then $0 \neq RaIM \subseteq N$. Hence $0 \neq RaI \subseteq (N : M)$. Since (N : M) is a weakly prime ideal of R, we have $Ra \subseteq (N : M)$ or $I \subseteq (N : M)$. Since $a \notin (N : M)$, we have $I \subseteq (N : M)$. Hence $Rm = IM \subseteq N$. Thus $m \in N$ and N is a weakly prime submodule of M. \Box

Remark 1.8. The converse of Proposition 1.7 is not true in general. Suppose that $M = \mathbb{Z} \times \mathbb{Z}$ is an $R = \mathbb{Z} \times \mathbb{Z}$ -module and $N = 2\mathbb{Z} \times \{0\}$ is a submodule of M. (N:M) = 0 is a weakly prime ideal. We have $(0,0) \neq (2,0)(1,1) \in 2\mathbb{Z} \times \{0\}$. Now, neither $(2,0) \in (N:M)$ nor $(1,1) \in N$. Hence N is not weakly prime. Notice that M is not a multiplication module.

Lemma 1.9. Let R be a ring, M an R-module and N a weakly prime submodule of M. If $0 \neq aRbRm \subseteq N$ and $am \notin N$, then $bM \subseteq N$ for all $a; b \in R$ and $m \in M$.

Proof. Let $a, b \in R$ and $m \in M$. Assume that $0 \neq aRbRm \subseteq N$ and $am \notin N$. Now we have $0 \neq (RaR)(RbR)m \subseteq N$. From Theorem 1.4 we have $RaRM \subseteq N$ or $RbRm \subseteq N$. Since $am \notin N$ we have $RbRm \subseteq N$. Because $0 \neq aRbRm$ we must have $0 \neq bRm \subseteq N$. Now, since N is weakly prime we get $bM \subseteq N$ or $m \in N$. Since $am \notin N$, we must have $bM \subseteq N$ and we are done. \Box

The following result gives characterizations of weakly prime submodules.

Theorem 1.10. Let M be an R-module. The following assertions are equivalent:

- (1) P is a weakly prime submodule of M.
- (2) $(P:Rx) = (P:M) \cup (0:Rx)$ for any $x \in M P$.
- (3) (P:Rx) = (P:M) or (P:Rx) = (0:Rx) for any $x \in M P$.

Proof. (1) ⇒ (2) Let $r \in (P : Rx)$ and $x \notin P$. Then $rRx \subseteq P$. Suppose $rRx \neq 0$. Hence $r \in (P : M)$ because P is weakly prime and $x \notin P$. If rRx = 0, then $r \in (0 : Rx)$. Thus $(P : Rx) \subseteq (P : M) \cup (0 : Rx)$. Now if $r \in (P : M) \cup (0 : Rx)$ then either $r \in (P : M)$ or $r \in (0 : Rx)$. Hence, when $r \in (0 : Rx)$, $rRx = 0 \subseteq P$ and so $r \in (P : Rx)$. If $r \in (P : M)$ then $rM \subseteq P$, and this implies $rRx \subseteq rM \subseteq P$. Hence $r \in (P : Rx)$ and therefore $(P : Rx) = (P : M) \cup (0 : Rx)$. (2) ⇒ (3) Is obvious. (3) ⇒ (1) Suppose that $0 \neq rRx \subseteq P$ with $r \in R$ and $x \in M - P$. Then $r \in (P : Rx)$ and $r \notin (0 : Rx)$. It follows from (3) that $r \in (P : Rx) = (P : M)$, as required.

Proposition 1.11. Let M_1 and M_2 be unitary *R*-modules over a ring *R*. Let $M = M_1 \oplus M_2$ and $N \subseteq M_1 \oplus M_2$. Then the following are satisfied:

- (1) $N = Q \oplus M_2$ is a weakly prime submodule of M if and only if Q is a weakly prime submodule of M_1 and $r \in R$, $x \in M_1$ with rRx = 0, but $x \notin Q$, $r \notin (Q : M_1)$ implies $rM_2 = 0$.
- (2) $N = M_1 \oplus Q$ is a weakly prime submodule of M if and only if Q is a weakly prime submodule of M_2 and $r \in R$, $x \in M_2$ with rRx = 0, but $x \notin Q$, $r \notin (Q : M_2)$ implies $rM_1 = 0$.

Proof. We will prove (1) and the proof of (2) will be similar. (\Rightarrow) Let $N = Q \oplus M_2$ be a weakly prime submodule of M. Let $0 \neq rRq \subseteq Q$, $q \notin Q$. Then $(q, 0) \notin Q \oplus M_2$, while $0 \neq rR(q, 0) \subseteq Q \oplus M_2$. Since $N = Q \oplus M_2$ is a weakly prime submodule of M we have $r \in (M_1 \oplus M_2 : Q \oplus M_2)$. Hence $rM_1 \subseteq Q$ and Q is a weakly prime submodule of M_1 . Now, suppose $r \in R$, $x \in M_1$ such that rRx = 0, but $x \notin Q$, $r \notin (Q : M_1)$. Assume that $rM_2 \neq 0$, so there esists $m \in M_2$ such that $rm \neq 0$. Thus $(0,0) \neq rR(x,m) = (rRx, rRm) = (0, rRm) \subseteq Q \oplus M_2 = N$. N is a weakly

prime submodule of M, so either $(x,m) \in Q \oplus M_2$ or $r \in (Q \oplus M_2 : M_1 \oplus M_2)$. Thus either $x \in Q$ or $r \in (Q : M_1)$ which is a contradiction with hypothesis, hence $rM_2 = 0$. (\Leftarrow) Let $r \in R$ and $(x, y) \in M$. Assume $(0, 0) \neq rR(x, y) \subseteq Q \oplus M_2$, so if $rRx \neq 0$, then $x \in Q$ or $r \in (Q : M_1)$, since Q is a weakly prime submodule of M_1 . Thus either $(x, y) \in Q \oplus M_2 = N$ or $r \in (N : M)$. If rRx = 0, suppose $x \notin Q$, $r \notin (Q, M_1)$. Then by hypothesis $rM_2 = 0$ and so $rRy \subseteq rM_2 = 0$. Hence rR(x, y) = (0, 0) which is a contradiction. Thus either $x \in Q$ or $r \in (Q : M_1)$ and hence either $(x, y) \in Q \oplus M_2 = N$ or $r \in (Q \oplus M_2 : M_1 \oplus M_2)$.

Remark 1.12. Let M_1 and M_2 be *R*-modules. If (0) is a prime submodule of M_1 , then $(0) \oplus M_2$ is a weakly prime submodule of $M_1 \oplus M_2$.

Proof. Let $r \in R$ and $(x, y) \in M$. If $(0, 0) \neq rR(x, y) \subseteq (0) \oplus M_2$, then rRx = 0 and $rRy \subseteq M_2$. Since (0) is a prime submodule of M_1 , either x = 0 or $r \in ((0) : M_1)$. Hence either $(x, y) = (0, y) \in (0) \oplus M_2$ or $r \in ((0) \oplus M_2 : M_1 \oplus M_2)$, that is $(0) \oplus M_2$ is a weakly prime submodule of $M_1 \oplus M_2$.

Proposition 1.13. Let M_1 and M_2 be *R*-modules. If $U \oplus W$ is a weakly prime submodule of $M_1 \oplus M_2$, then U and W are weakly prime submodules of M_1 and M_2 respectively.

Proof. The proof is straight forward so it is omitted.

Remark 1.14. The converse of Proposition 1.13 is not true in general as the following example shows.

Example 1.15. Suppose $M = \mathbb{Z} \oplus \mathbb{Z}$ is a \mathbb{Z} -module and consider the submodule $N = p\mathbb{Z} \oplus \{0\}$ of M. $p\mathbb{Z}$ is a prime submodule of the \mathbb{Z} -module \mathbb{Z} and hence also a weakly prime submodule and $\{0\}$ is a weakly prime submodule of the \mathbb{Z} module \mathbb{Z} . $N = p\mathbb{Z} \oplus \{0\}$ is not weakly prime since $(0,0) \neq p(1,0) \in p\mathbb{Z} \oplus \{0\}$ but $p \notin (p\mathbb{Z} \oplus \{0\} :_{\mathbb{Z}} \mathbb{Z} \oplus \mathbb{Z})$ and $(1,0) \notin p\mathbb{Z} \oplus \{0\}$.

2. The Weakly Prime Radical

We begin this section with the definition of weakly m-systems.

Definition 2.1 Let *R* be a ring and *M* be an *R*-module. A nonempty set $S \subseteq M \setminus \{0\}$ is called a weakly m-system if, for each ideal *A* of *R*, and for all submodules $K, L \subseteq M$, if $(K+L) \cap S \neq \emptyset$, $(K+AM) \cap S \neq \emptyset$, and $AL \neq 0$ then $(K+AL) \cap S \neq \emptyset$.

Proposition 2.2. Let M be an R-module. Then a submodule P of M is weakly prime if and only if $M \setminus P$ is a weakly m-system.

Proof. Suppose $S = M \setminus P$. Let A be an ideal in R and K and L be submodules of M such that $(K + L) \cap S \neq \emptyset$, $(K + AM) \cap S \neq \emptyset$ and $AL \neq 0$. If $(K + AL) \cap S = \emptyset$ then $K + AL \subseteq P$. Hence $AL \subseteq P$ and since P is weakly prime, and $AL \neq 0$, $L \subseteq P$ or $AM \subseteq P$. It follows that $(K + L) \cap S = \emptyset$ or $(K + AM) \cap S = \emptyset$, a contradiction. Therefore, S is a weakly m-system in M. Conversely, let $S = M \setminus P$ be a weakly m-system in M. Suppose $AL \subseteq P$ and $AL \neq 0$, where A is an ideal of R and L is

a submodule M. If $L \not\subseteq P$ and $AM \not\subseteq P$, then $L \cap S \neq \emptyset$ and $AM \cap S \neq \emptyset$. Thus, $AL \cap S \neq \emptyset$, a contradiction. Therefore, P is a weakly prime submodule of M. \Box

The following proposition offers several characterizations of a weakly m-system S when it is the complement of a submodule.

Proposition 2.3. Let R be a ring and M be an R-module. Let P be a proper submodule of M, and let $S := M \setminus P$. Then the following statements are equivalent:

- (1) P is weakly prime;
- (2) S is a weakly m-system;
- (3) for each left ideal $A \subseteq R$, and for every submodule $L \leq M$, if $L \cap S \neq \emptyset$, $AM \cap S \neq \emptyset$ and $AL \neq 0$ then $AL \cap S \neq \emptyset$;
- (4) for each ideal $A \subseteq R$, and for every $m \in M$, if $Rm \cap S \neq \emptyset$, $AM \cap S = \emptyset$ and $AL \neq 0$, then $ARm \cap S \neq \emptyset$;
- (5) for each $a \in R$, and for each $m \in M$, if $Rm \cap S \neq \emptyset$, $aM \cap S \neq \emptyset$ and $aRm \neq 0$, then $aRm \cap S \neq \emptyset$.

Proof. (1) \Leftrightarrow (2) follows from Proposition 2.2. (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) is clear (5) \Rightarrow (1). Suppose $a \in R$ and $m \in M$ with $0 \neq aRm \subseteq P$. If $Rm \notin P$ and $aM \notin P$, then $Rm \cap S \neq \emptyset$ and $aM \cap S \neq \emptyset$ and $aRm \neq 0$. From (5) $aRm \cap S \neq \emptyset$. Hence $aRm \notin P$ a contradiction. Hence $Rm \subseteq P$ or $aM \subseteq P$ and P is weakly prime. \Box

Proposition 2.4. Let M be an R-module, $S \subseteq M$ be a weakly m-system, and let P be a submodule of M maximal with respect to the property that P is disjoint from S. Then P is a weakly prime submodule.

Proof. Suppose $0 \neq AL \subseteq P$, where A is an ideal of R and $L \leq M$. If $L \notin P$ and $AM \notin P$, then by the maximal property of P, we have, $(P + L) \cap S \neq \emptyset$ and $(P + AM) \cap S \neq \emptyset$. Thus, since S is a weakly m-system $(P + AL) \cap S \neq \emptyset$ and it follows that $P \cap S \neq \emptyset$, a contradiction. Thus, P must be a weakly prime submodule.

Next we need a generalization of the notion of \sqrt{N} for any submodule N of M. We adopt the following:

Definition 2.5. Let R be a ring and M be an R-module. For a submodule N of M, if there is a weakly prime submodule containing N, then we define $\sqrt{N} := \{m \in M :$ every weakly m-system containing m meets $N\}$. If there is no weakly prime submodule containing N, then we put $\sqrt{N} = M$.

Theorem 2.6. Let M be an R-module and $N \leq M$. Then either $\sqrt{N} = M$ or \sqrt{N} equals the intersection of all the weakly prime submodules of M containing N.

Proof. Suppose that $\sqrt{N} \neq M$. This means that $\{P|P \text{ is a weakly prime submodule of } M \text{ and } N \subseteq P\} \neq \emptyset$. We first prove that $\sqrt{N} \subseteq \{P|P \text{ is a weakly prime submodule of } M \text{ and } N \subseteq P\}$. Let $m \in \sqrt{N}$ and P be any weakly prime submodule

of M containing N. Consider the m-system $M \setminus P$. This m-system cannot contain m, for otherwise it meets N and hence also P. Therefore, we have $m \in P$. Conversely, assume $m \notin \sqrt{N}$. Then, by Definition 2.5, there exists an m-system S containing m which is disjoint from N. By Zorn's Lemma, there exists a submodule $P \supseteq N$ which is maximal with respect to being disjoint from S. By Proposition 2.4, P is a weakly prime submodule of M, and we have $m \notin P$, as desired. \Box

3. Weakly 2-absorbing Submodules

From [11] we have the following:

Definition 3.1. Let *P* be a proper ideal of a ring *R*. Then *P* is a 2-absorbing ideal of *R* if $aRbR \subseteq P$ implies $ab \in P$ or $bc \in P$ or $ac \in P$ for all $a; b; c \in R$.

Definition 3.2. Let R be a ring and N be a proper submodule of an R-module M. Then N is 2-absorbing submodule of M if $aRbRm \subseteq N$ implies $abM \subseteq N$ i.e. $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$ for all $a; b \in R$ and $m \in M$.

Remark 3.3. If R is a commutative ring then this notion of a 2-absorbing submodule coincides with that of Darani and Soheilnia [7].

We now have the following:

Definition 3.4. Let R be a ring and N be a proper submodule of an R-module M. Then N is a weakly 2-absorbing submodule of M if $0 \neq aRbRm \subseteq N$ implies $abM \subseteq N$ i.e. $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$ for all $a; b \in R$ and $m \in M$.

Remark 3.5. Every 2-absorbing submodule is weakly 2-absorbing but the converse does not necessarily hold. For example consider the case where $R = \mathbb{Z}$, $M = \mathbb{Z}/30\mathbb{Z}$ and N = 0. Then $2.3.(5 + 30\mathbb{Z}) = 0 \in N$ while $2.3 \notin (N :_R M)$, $2.(5 + 30Z) \notin N$ and $3.(5+30Z) \notin N$. Therefore N is not 2-absorbing while it is weakly 2-absorbing.

Proposition 3.6. Let $x \in M$ and $a \in R$. Then if $ann_l(x) \subseteq (Rx : M)$, the submodule Rx is 2-absorbing if and only if Rx is weakly 2- absorbing.

Proof. Let Rx be a weakly 2-absorbing submodule of M and suppose $r, s \in R$ and $m \in M$ with $rRsRm \subseteq Rx$. Since Rx is a weakly 2-absorbing submodule, we may assume rRsRm = 0, otherwise Rx is 2-absorbing. Now $rRsR(x+m) \subseteq Rx$. If $rRsR(x+m) \neq 0$ then we have $rs \in (Rx:M)$ or $r(x+m) \in Rx$ or $s(x+m) \in Rx$, as Rx is a weakly 2-absorbing submodule. Hence $rs \in (Rx:M)$ or $rm \in Rx$ or $sm \in Rx$. Now let rRsR(x+m) = 0. Then rRsRm = 0 implies rRsRx = 0. Hence $rs \in ann_l(x) \subseteq (Rx:M)$. Thus Rx is 2-absorbing. \Box

Proposition 3.7. Let R be a ring and N be a proper submodule of an R-module M. If N is weakly prime, then it is weakly 2-absorbing.

Proof. Assume N is a weakly prime submodule of the R-module M and $0 \neq aRbRm \subseteq N$ for all $a; b \in R$ and $m \in M$. Suppose $am \notin N$. It now follows from Proposition 1.9 that $bM \subseteq N$ and consequently $abM \subseteq N$. Hence N is weakly 2-absorbing. \Box

Compare the following theorem with that of [7, Theorem 2.3(ii)].

Theorem 3.8. The intersection of each pair of weakly prime submodules of an R-module M is a weakly 2-absorbing submodule of M.

Proof. Let N and K be two weakly prime submodules of M. If N = K, then $N \cap K$ is a weakly prime submodule of M so that $N \cap K$ is a weakly 2-absorbing submodule of M. Assume that N and K are distinct. Since N and K are proper submodules of M, it follows that $N \cap K$ is a proper submodule of M. Next, let $a, b \in R$ and $m \in M$ be such that $0 \neq aRbRm \subseteq N \cap K$ but $am \notin N \cap K$ and $ab \notin (N \cap K : M)$. Then, we can conclude that (a) $am \notin N$ or $am \notin K$, and (b) $ab \notin (N :_R M)$ or $ab \notin (K :_R M)$. These two conditions give 4 cases:

- (1) $am \notin N$ and $ab \notin (N :_R M)$;
- (2) $am \notin N$ and $ab \notin (K :_R M)$;
- (3) $am \notin K$ and $ab \notin (N :_R M)$;
- (4) $am \notin K$ and $ab \notin (K :_R M)$.

We first consider Case(1). Since $0 \neq aRbRm \subseteq N \cap K \subseteq N$ and $am \notin N$, it follows from Proposition 1.9 that $bM \subseteq N$. This is a contradiction because $ab \notin (N :_R M)$. Hence Case(1) does not occur. Similarly, Case(4) is not possible. Next, Case(2) is considered. Again, we obtain that $bM \subseteq N$ and then $bm \in N$. Since $0 \neq aRbRm \subseteq K$ it follows that $0 \neq (RaR)(RbR)m) \subseteq K$. Hence, from the fact that K is weakly prime and from Theorem 1.4 it follows that $aM \subseteq RaRM \subseteq K$ or $bm \in RbRm \subseteq K$ If $aM \subseteq K$, then $abM \subseteq aM \subseteq K$ which contradicts $ab \notin (K :_R M)$. Thus $bm \in K$. Hence $bm \in N \cap K$. The proof of Case(3) is similar to that of Case(2). Hence $N \cap K$ is a weakly 2-absorbing submodule of M. \Box

Definition 3.9. Let N be a weakly 2-absorbing submodule of M. (a, b, m) is called a triple-zero of N if aRbRm = 0, $ab \notin (N :_R M)$, $am \notin N$ and $bm \notin N$.

The following result is an analogue of [6, Theorem 1].

Theorem 3.10. Let N be weakly 2-absorbing submodule of M and (a, b, m) be a triple-zero of N for some $a, b \in R$ and $m \in M$. Then the followings hold.

- (1) $aRbN = a(N:_R M)m = b(N:_R M)m = 0.$
- (2) $a(N:_R M)N = b(N:_R M)N = (N:_R M)bN = (N:_R M)bm = (N:_R M)bm = (N:_R M)^2m = 0.$

Proof. Suppose that (a, b, m) is a triple-zero of N for some $a, b \in R$ and $m \in M$.

(1) Assume that $aRbN \neq 0$. Then there is an element $n \in N$ such that $aRbRn \neq 0$. Now $aRbR(m+n) = aRbRm + aRbRn = aRbRn \neq 0$ since aRbRm = 0 because (a, b, m) is a triple-zero of N. Since $0 \neq aRbR(m+n) \subseteq N$ and N weakly 2-absorbing we have $ab \in (N :_R M)$ or $a(m+n) \in N$ or $b(m+n) \in N$. Since (a, b, m) is a triple-zero of N, $ab \notin (N :_R M)$. Hence $a(m+n) \in N$

or $b(m + n) \in N$ and consequently $am \in N$ or $bm \in N$ a contradiction. Hence aRbN = 0. Now, we suppose that $a(N :_R M)m \neq 0$. Thus there exists an element $r \in (N :_R M)$ such that $arm \neq 0$. Hence aR(r + b)rm = aRrRm + aRbRm = aRrRm. Since $0 \neq arm \in aRrRm \subseteq N$ and N weakly 2-absorbing we have $a(r+b) \in (N :_R M)$ or $am \in N$ or $(r+b)m \in N$. Hence $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$ a contradiction since (a, b, m) is a triple-zero of N. Similarly, it can be easily seen that $b(N :_R M)m = 0$.

(2) Assume that $a(N:_R M)N \neq 0$. Then there are $r \in (N:_R M)$, $n \in N$ such 0. Now $0 \neq aR(b+r)R(m+n) \subseteq N$. Therefore, we have $a(b+r) \in (N:_R M)$ or $a(m+n) \in N$ or $(b+r)(m+n) \in N$ and we obtain $ab \in (N:_R M)$ or $am \in N$ or $bm \in N$, a contradiction. Hence $a(N :_R M)N = 0$. In a similar way, we get $b(N :_R M)N = 0$. Now, we suppose that $(N :_R M)bN \neq 0$. Then there are $r \in (N :_R M)$, $n \in N$ such that $rbn \neq 0$. Now, from above $(a+r)b(n+m) = abn + abm + rbn + rbm = rbn \neq 0$. Hence $0 \neq 0$ $(a+r)RbR(n+m) \subseteq N$ and since N is weakly 2-absorbing $(a+r)b \in (N:_R M)$ or $(a+r)(n+m) \in N$ or $b(n+m) \in N$. Hence $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$ a contradiction since (a, b, m) is a triple-zero of N. Now, we suppose that $(N:_R M)bm \neq 0$. Then there is $r \in (N:_R M)$ such that $rbm \neq 0$. Hence $0 \neq rbm = (a+r)bm \in (a+r)RbRm = rRbRm \subseteq N$. Since N is weakly 2-absorbing, we have $(a + r)b \in (N :_R M)$ or $(a + r)m \in N$ or $bm \in N$. Therefore $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$ a contradiction since (a, b, m) is a triple-zero of N. Hence $(N :_R M)bm = 0$. Lastly, we show that $(N:_R M)^2 m = 0$. Let $(N:_R M)^2 m \neq 0$. Thus there exist $r, s \in (N:_R M)$ where $rsm \neq 0$. By (1), we get $(a+r)(b+s)m = rsm \neq 0$. Thus we have $0 \neq (a+r)R(b+s)Rm \subseteq N$. Hence $(a+r)(b+s) \in (N:_R M)$ or $(a+r)m \in N$ or $(b+s)m \in N$.

Consequently, $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$ a contradiction, since (a, b, m) is a triple-zero of N. Therefore $(N : M)^2 m = 0$. \Box

The following result is an analogue of [6, Lemma 1].

Proposition 3.11. Assume that N is a weakly 2-absorbing submodule of an Rmodule M that is not 2-absorbing. Then $(N :_R M)^2 N = 0$. In particular, $(N :_R M)^3 \subseteq Ann(M)$.

Proof. Suppose that N is a weakly 2-absorbing submodule of an R-module M that is not 2-absorbing. Then there is a triple-zero (a, b, m) of N for some $a, b \in R$ and $m \in M$. Assume that $(N :_R M)^2 N \neq 0$. Thus there exist $r, s \in (N :_R M)$ and $n \in N$ with $rsn \neq 0$. By Theorem 3.10, we get $(a + r)(b + s)(n + m) = rsn \neq 0$. Then we have $0 \neq (a + r)R(b + s)R(n + m) \subseteq N$. Since N is weakly 2-absorbing we have $(a + r)(b + s) \in (N :_R M)$ or $(a + r)(n + m) \in N$ or $(b + s)(n + m) \in N$ and so $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$, which is a contradiction.

Thus $(N :_R M)^2 N = 0$. We get $(N :_R M)^3 \subseteq ((N :_R M)^2 N : M) = (0 : M) = Ann(M)$.

4. On a Question from Badawi and Yousefian

In [4], the authors asked the following question:

Question. Suppose that *L* is a weakly 2-absorbing ideal of a ring *R* and $0 \neq IJK \subseteq L$ for some ideals *I*, *J*, *K* of *R*. Does it imply that $IJ \subseteq L$ or $IK \subseteq L$ or $JK \subseteq L$?

This section is devoted to studying the above question and its generalization in modules over non-commutative rings.

Definition 4.1. Let N be a weakly 2-absorbing submodule of an R-module M and let $0 \neq I_1 I_2 K \subseteq N$ for some ideals I_1, I_2 of R and some submodule K of M. N is called free triple-zero in regard to I_1, I_2, K if (a, b, m) is not a triple-zero of N for every $a \in I_1, b \in I_2$ and $m \in K$.

The following result and its proof are analogous of [6, Lemma 2].

Lemma 4.2. Let N be a weakly 2-absorbing submodule of M. Assume that $aRbK \subseteq N$ for some $a, b \in R$ and some submodule K of M where (a, b, m) is not a triple-zero of N for every $m \in K$. If $ab \notin (N :_R M)$, then $aK \subseteq N$ or $bK \subseteq N$.

Proof. Assume that $aK \nsubseteq N$ and $bK \nsubseteq N$. Then there are $x, y \in K$ such that $ax \notin N$ and $by \notin N$. We get $bx \in N$ since N is a weakly 2-absorbing submodule, (a, b, x) is not a triple-zero of N, $ab \notin (N :_R M)$ and $ax \notin N$. In a similar way, $ay \in N$. Now, $aRbR(x + y) \subseteq N$ and since (a, b, x + y) is not a triple-zero of N and $ab \notin (N :_R M)$ we have $a(x + y) \in N$ or $b(x + y) \in N$. Assume that $a(x + y) = (ax + ay) \in N$. As $ay \in N$, we get $ax \in N$, a contradiction. Assume that $b(x + y) = (bx + by) \in N$. As $bx \in N$, we get $by \in N$, a contradiction again. Hence we obtain that $aK \subseteq N$ or $bK \subseteq N$.

Let N be a weakly 2-absorbing submodule of an R-module M and $I_1I_2K \subseteq N$ for some for some ideals I_1, I_2 of R and some submodule K of M where N is free triple-zero in regard to I_1, I_2, K . Note that if $a \in I_1, b \in I_2$ and $m \in K$, then $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$.

The following result and its proof are analogous of [6, Theorem 1] and its proof.

Theorem 4.3. Assume that N is a weakly 2-absorbing submodule of an R-module M and $0 \neq IJK \subseteq N$ for some ideals I, J of R and some submodule K of M where N is free triple-zero in regard to I, J, K. Then $IJ \subseteq (N :_R M)$ or $IK \subseteq N$ or $JK \subseteq N$.

Proof. Let N be a weakly 2-absorbing submodule of an R-module M and $0 \neq IJK \subseteq N$ for some ideals I, J of R and some submodule K of M where N is free triple-zero in regard to I, J, K. Suppose $IJ \nsubseteq (N :_R M)$. We show that $IK \subseteq N$ or $JK \subseteq N$. Assume $IK \nsubseteq N$ and $JK \nsubseteq N$. Then $a_1K \nsubseteq N$ and $a_2K \nsubseteq N$ where $a_1 \in I$ and $a_2 \in J$. From Lemma 4.2 $a_1a_2 \in (N :_R M)$ since $a_1Ra_2K \subseteq IJK \subseteq N$ and $a_1K \nsubseteq N$ and $a_2K \oiint N$. By our assumption, there are $b_1 \in I$ and $b_2 \in J$ such that $b_1b_2 \notin (N :_R M)$. By Lemma 4.2, we get $b_1K \subseteq N$ or $b_2K \subseteq N$ since $b_1Rb_2K \subseteq IJK \subseteq N$ and $b_1b_2 \notin (N :_R M)$. We have the following cases: Case (1)

 $b_1K \subseteq N$ and $b_2K \not\subseteq N$: Since $a_1Rb_2K \subseteq IJK \subseteq N$ and $a_1K \nsubseteq N$ and $b_2K \not\subseteq N$ it follows from Lemma 4.2 that $a_1b_2 \in (N:_R M)$. Since $b_1K \subseteq N$ and $a_1K \nsubseteq N$, we conclude $(a_1 + b_1)K \not\subseteq N$. On the other hand since $(a_1 + b_1)Rb_2K \subseteq N$ and neither $(a_1+b_1)K \subseteq N$ nor $b_2K \subseteq N$, we get that $(a_1+b_1)b_2 \in (N:_R M)$ by Lemma 4.2. But, because $(a_1 + b_1)b_2 = (a_1b_2 + b_1b_2) \in (N :_R M)$ and $(a_1 + b_1)b_2 \in (N :_R M)$, we get $b_1b_2 \in (N :_R M)$ which is a contradiction. Case (2) $b_2K \subseteq N$ and $b_1K \not\subseteq N$: By a similar argument to case (1) we get a contradiction. Case (3) $b_1 K \subseteq N$ and $b_2K \subseteq N: b_2K \subseteq N$ and $a_2K \not\subseteq N$ gives $(a_2+b_2)K \not\subseteq N$. But $a_1R(a_2+b_2)K \subseteq N$ and neither $a_1K \subseteq N$ nor $(a_2 + b_2)K \subseteq N$, hence $a_1(a_2 + b_2) \in (N :_R M)$ by Lemma 4.2. Since $a_1a_2 \in (N:_R M)$ and $(a_1a_2 + a_1b_2) \in (N:_R M)$, we have $a_1b_2 \in (A :_R M)$ $(N:_R M)$. Since $(a_1 + b_1)Ra_2K \subseteq N$ and neither $a_2K \subseteq N$ nor $(a_1 + b_1)K \subseteq N$, we conclude $(a_1 + b_1)a_2 \in (N :_R M)$ by Lemma 4.2. But $(a_1 + b_1)a_2 = a_1a_2 + b_1a_2$, so $(a_1a_2 + b_1a_2) \in (N :_R M)$ and since $a_1a_2 \in (N :_R M)$, we get $b_1a_2 \in (N :_R M)$. Now, since $(a_1+b_1)R(a_2+b_2)K \subseteq N$ and neither $(a_1+b_1)K \subseteq N$ nor $(a_2+b_2)K \subseteq N$ N, we have $(a_1 + b_1)(a_2 + b_2) = (a_1a_2 + a_1b_2 + b_1a_2 + b_1b_2) \in (N :_R M)$ by Lemma 4.2. But $a_1a_2, a_1b_2, b_1a_2 \in (N :_R M)$, so $b_1b_2 \in (N :_R M)$ which is a contradiction. Consequently $IK \subseteq N$ or $JK \subseteq N$. \square

5. Weakly 2-absorbing Submodules of Product Modules

Proposition 5.1. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ where M_1 is an R_1 module

and $0 \neq M_2$ is an R_2 module. If N_1 is a proper submodule of M_1 then the following statements are equivalent:

- (1) N_1 is a 2-absorbing submodule of M_1 ;
- (2) $N_1 \times M_2$ is a 2-absorbing submodule of $M_1 \times M_2$;
- (3) $N_1 \times M_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$.

Proof. (1) \Leftrightarrow (2) follows from [11, Theorem 2.5]. (2) \Rightarrow (3) is clear. We show (3) \Rightarrow (1) Let $a, b \in R_1$ and $x \in M_1$ such that $aR_1bR_1x \subseteq N_1$. For every $0 \neq y \in M_2$ we have $(a, 1)(b, 1)(x, y) = (abx, y) \neq (0, 0)$. Now $(0, 0) \neq (abx, y) \in aR_1bR_1x \times 1R_11R_1y \subseteq N_1 \times M_2$. Since $N_1 \times M_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$, we get $(a, 1)(b, 1) \in (M_1 \times M_2 : N_1 \times M_2)$ or $(a, 1)(x, y) \in N_1 \times M_2$ or $(b, 1)(x, y) \in N_1 \times M_2$. Hence $ab \in (N_1 : M_1)$ or $ax \in N_1$ or $bx \in N_1$.

Proposition 5.2. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ where $0 \neq M_1$ is an R_1 module and M_2 is an R_2 module. If N_2 is a proper submodule of M_2 then the following statements are equivalent:

- (1) N_2 is a 2-absorbing submodule of M_1 ;
- (2) $M_1 \times N_2$ is a 2-absorbing submodule of $M_1 \times M_2$;
- (3) $M_1 \times N_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$.

Proof. Similar to Proposition 5.1.

Proposition 5.3. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ where M_1 is an R_1 module and $0 \neq M_2$ is an R_2 module. Let $N_1 \neq M_1$. If N_1 is a weakly prime submodule of M_1 and 0 a prime submodule of M_2 then $N_1 \times \{0\}$ is a weakly 2-absorbing submodule of $M_1 \times M_2$.

Proof. Assume $(0,0) \neq (a,b)R(c,d)R(x,y) \subseteq N_1 \times \{0\}$ where $(a,b) \in R, (c,d) \in R$ and $(x,y) \in M$. Hence $0 \neq aR_1cR_1x \subseteq N_1$ and $bR_2dR_2y = 0$. Since N_1 is a weakly prime submodule of M_1 we get $a \in (N_1 : M_1)$ or $c \in (N_1 : M_1)$ or $x \in N_1$. Also, since 0 is a prime submodule of M_2 and $bR_2dR_2y = 0$ we have $b \in (0 : M_2)$ or $d \in (0 : M_2)$ or y = 0. In any of the above cases we have $(a,b)(c,d) \in (N_1 \times \{0\} : M)$ or $(a,b)(x,y) \in N_1 \times \{0\}$ or $(c,d)(x,y) \in N_1 \times \{0\}$. □

Proposition 5.4. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ where $0 \neq M_1$ is an R_1 module and $0 \neq M_2$ is an R_2 module. If $N = N_1 \times N_2$ is a weakly 2-absorbing submodule of M, $N_1 \neq M_1$, and $N_2 \neq M_2$, then N_1 and N_2 are weakly prime submodules of M_1 and M_2 respectively.

Proof. Let $0 \neq rRx \subseteq N_1$, where $r \in R_1$ and $x \in M_1$. Consider $z \in M_2 \setminus N_2$. Then $(0,0) \neq (1,0)R(r,1)R(x,z) \subseteq N$ and as N is weakly 2-absorbing, $(1,0)(r,1) \in (N : M)$ or $(r,1)(x,z) \in N$ or $(1,0)(x,z) \in N$. Note that since $z \in M_2 \setminus N_2$, $(r,1)(x,z) \notin N$. Thus $(1,0)(r,1) \in (N : M) = (N_1 : M_1) \times (N_2 : M_2)$ or $(1,0)(x,z) \in N$. Therefore, $r \in (N_1 : M_1)$ or $x \in N_1$. This shows that N_1 is a weakly prime submodule of M_1 . Similarly we can show that N_2 is a weakly prime submodule of M_2 .

Proposition 5.5. Let N_i be a proper submodule of an R_i -module M_i , for i = 1, 2. If $N_1 \times N_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$, then

- (1) N_1 is a weakly 2-absorbing submodule of M_1 ,
- (2) N_2 is a weakly 2-absorbing submodule of M_2 .

Proof.

- (1) Suppose that $N_1 \times N_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$. Let $a_1, a_2 \in R_1$ and $m \in M_1$ such that $0 \neq a_1 R_1 a_2 R_1 m \subseteq N_1$. Clearly, $(0,0) \neq (a_1, 1)(R_1 \times R_2)(a_2, 1)(R_1 \times R_2)(m, m_2)$ for any $m_2 \in N_2$. Hence $(0,0) \neq (a_1, 1)(R_1 \times R_2)(a_2, 1)(R_1 \times R_2)(m, m_2) \subseteq a_1 R_1 a_2 R_1 m \times 1 R_2 1 R_2 m_2 \subseteq N_1 \times N_2$. Since $N_1 \times N_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$, $(a_1, 1)(a_2, 1) \in (N_1 \times N_2) : M_1 \times M_2)$ or $(a_1, 1)(m, m_2) \in N_1 \times N_2$ or $(a_2, 1)(m, m_2) \in N_1 \times N_2$. Consequently $a_1 a_2 \in (N_1 : M_1)$ or $a_1 m \in N_1$ or $a_2 m \in N_1$. Hence N_1 is a weakly 2-absorbing submodule of M_1 .
- (2) This follows as in part (1).

The converse of the above proposition is no true in general:

Example 5.6. Suppose that $M = \mathbb{Z} \times \mathbb{Z}$ is an $R = \mathbb{Z} \times \mathbb{Z}$ -module and $N = p\mathbb{Z} \times \{0\}$ is a submodule of M where $p\mathbb{Z}$ is a prime submodule and hence a weakly 2-absorbing submodule of the \mathbb{Z} module \mathbb{Z} and $\{0\}$ is weakly 2-absorbing.submodule of the \mathbb{Z} module \mathbb{Z} . Then (N : M) = 0. Assume that $(0, 0) \neq (p, 1)(1, 0)(1, 1) \in p\mathbb{Z} \times \{0\}$. Then neither $(p, 1)(1, 0) \in (N : M)$ nor $(p, 1)(1, 1) \in N$ nor $(1, 0)(1, 1) \in N$. Hence N is not weakly 2-absorbing.

Proposition 5.7. Let N_i be a proper submodule of an *R*-module M_i , for i = 1, 2Then the following conditions are equivalent:

- (1) $N_1 \times M_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$;
- (2) (a) N_1 is a weakly 2-absorbing submodule of M_1 ;
 - (b) For each $a_1, a_2 \in R$ and $m \in M_1$ such that $a_1Ra_2Rm = 0$ if $a_1a_2 \notin (N_1:M_1)$ and $a_1m \notin N_1$ and $a_2m \notin N_1$ then $a_1Ra_2M_2 = 0$.

Proof. (1) \Rightarrow (2).

- (a) Suppose $N_1 \times M_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$. Let $a_1, a_2 \in R$ and $m \in M_1$ such that $0 \neq a_1 R a_2 R m \subseteq N_1$. Now $(0,0) \neq (a_1,0)(R \times R)(a_2,0)(R \times R)(m,0) \subseteq N_1 \times M_2$. Hence $N_1 \times M_2$ a weakly 2-absorbing submodule of $M_1 \times M_2$ gives $(a_1a_2,0) = (a_1,0)(a_2,0) \in (N_1 \times M_2 : M_1 \times M_2)$ or $(a_1,0)(m,0) \in N_1 \times M_2$ or $(a_2,0)(m,0) \in N_1 \times M_2$. Consequently $a_1a_2 \in$ $(N_1 : M_1)$ or $a_1m \in N_1$ or $a_2m \in N_1$. Hence N_1 is a weakly 2-absorbing submodule of M_1
- (b) Let $a_1Ra_2Rm = 0$ with $a_1a_2 \notin (N_1 : M_1)$ and $a_1m \notin N_1$ and $a_2m \notin N_1$ for $a_1, a_2 \in R$ and $m \in M_1$. Suppose $a_1Ra_2M_2 \neq 0$. Hence there exists $m_2 \in M_2$ such that $a_1Ra_2m_2 \neq 0$ and therefore $(0,0) \neq a_1Ra_2(m,m_2) \subseteq a_1Ra_2Rm \times a_1Ra_2Rm_2 = (a_1,1)(R \times R)(a_2,1)(R \times R)(m,m_2) \subseteq N_1 \times M_2$. Since $N_1 \times M_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$ we have $(a_1,1)(a_2,1) \in (N_1 \times M_2 : M_1 \times M_2)$ or $(a_1,1)(m,m_2) \in N_1 \times M_2$ or $(a_2,1)(m,m_2) \in N_1 \times M_2$. Hence $a_1a_2 \in (N_1 : M_1)$ or $a_1m \in N_1$ or $a_2m \in N_1$ a contradiction. Hence $a_1Ra_2M_2 = 0$.
- $(2) \Rightarrow (1).$
- Let $a_1, a_2 \in R$ and $(m_1, m_2) \in M_1 \times M_2$ such that $(0, 0) \neq (a_1, a_1)(R \times R)(a_2, a_2)(R \times R)(m_1, m_2) \subseteq N_1 \times M_2$. If $0 \neq a_1Ra_2Rm_1$ then $0 \neq a_1Ra_2Rm_1 \subseteq N_1$ and N_1 a weakly 2-absorbing submodule of M_1 gives $a_1a_2 \in (N_1 : M_1)$ or $a_1m_1 \in N_1$ or $a_2m_2 \in N_1$. Hence $(a_1, a_1)(a_2, a_2) \in (N_1 \times M_2 : M_1 \times M_2)$ or $(a_1, a_1)(m_1, m_2) \in N_1 \times M_2$ or $(a_2, a_2)(m_1, m_2) \in N_1 \times M_2$. Thus $N_1 \times M_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$. If $a_1Ra_2Rm_1 = 0$, then $a_1Ra_2Rm_2 \neq 0$ and therefore $a_1Ra_2M_2 \neq 0$. By b. $a_1a_2 \in (N_1 : M_1)$ or $a_1m_1 \in N_1$ or $a_2m_2 \in N_1$. Thus $(a_1, a_1)(a_2, a_2) \in (N_1 \times M_2 : M_1 \times M_2)$ or $(a_1, a_1)(m_1, m_2) \in N_1 \times M_2$ or $(a_2, a_2)(m_1, m_2) \in N_1 \times M_2$. Hence $N_1 \times M_2$ is a weakly 2-absorbing submodule of $M_1 \times M_2$.

Proposition 5.8. Let N_i be a submodule of an R_i -module M_i , for i = 1, 2, 3. If N is a weakly 2-absorbing submodule of $M_1 \times M_2 \times M_3$, then $N = \{(0, 0, 0)\}$ or N is a 2-absorbing submodule of $M_1 \times M_2 \times M_3$.

Proof. Suppose that N is a weakly 2-absorbing submodule of $M_1 \times M_2 \times M_3$ that is not 2-absorbing. We will show that $N = \{(0,0,0)\}$. Now suppose that $N_1 \times N_2 \times N_3 \neq \{0\} \times \{0\} \times \{0\}$. Thus $N_i \neq \{0\}$, for some i = 1, 2, 3. We claim that $N_1 \neq \{0\}$. There exists $m_1 \in N_1$ such that $m_1 \neq 0$. To show that $N_2 = M_2$ or $N_3 = M_3$. Assume that $N_2 \neq M_2$ and $N_3 \neq M_3$. Thus there exist $m_2 \in M_2$ and $m_3 \in M_3$ such that $m_2 \notin N_2$ and $m_3 \notin N_3$. Since $(1, 0, 1)(1, 1, 0)(m_1, m_2, m_3) = (m_1, 0, 0) \neq (0, 0, 0)$, we have $(0, 0, 0) \neq (1, 0, 1)(R_1 \times R_2 \times R_3)(1, 1, 0)(R_1 \times R_2 \times R_3)(m_1, m_2, m_3) \subseteq N_1 \times N_2 \times N_3$. Now, because $N_1 \times N_2 \times N_3$ is a weakly 2-absorbing submodule of $M_1 \times M_2 \times M_3$, we have $(1, 0, 1)(1, 1, 0) \in (N_1 \times N_2 \times N_3 : M_1 \times M_2 \times M_3)$ or $(1, 0, 1)(m_1, m_2, m_3) \in N_1 \times N_2 \times N_3$ or $(1, 1, 0)(m_1, m_2, m_3) \in N_1 \times N_2 \times N_3$ or $(1, 1, 0)(m_1, m_2, m_3) \in N_1 \times M_2 \times N_3$ or $(1, 1, 0)(m_1, m_2, m_3) \in N_1 \times M_2 \times N_3$, then $(0, 1, 0) \in (N_1 \times M_2 \times N_3 : M_1 \times M_2 \times M_3)$. By Proposition 3.11, $\{0\} \times M_2 \times \{0\} = (0, 1, 0)^2 N \subseteq (N : N_1 \times M_2 \times N_3) = \{(0, 0, 0)\}$, which is a contradiction. Hence $N = \{(0, 0, 0)\}$.

References

- A. E. Ashour and M. Hamoda, Weakly primary submodules over non-commutative rings, J. Progr. Res. Math., 7(2016), 917–927.
- [2] S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamkang J. Math., 38(2007), 247–252.
- [3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75(2007), 417–429.
- [4] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39(2013), 441–452.
- [5] M. Behboodi, On the prime radical and Baer's lower nilradical of modules, Acta Math. Hungar., 122(2009), 293–306.
- [6] A. Y. Darani and F. Soheilnia, U. Tekir, and G. Ulucak, On weakly 2-absorbing primary submodules of modules over commutative rings, J. Korean Math. Soc., 54(5)(2017), 1505–1519.
- [7] A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math., 9(2011), 577–584.
- [8] J. Dauns, Prime modules, J. Reine Angew. Math., 298(1978), 156–181.
- N. J. Groenewald, On 2-absorbing ideals of non-commutative rings, JP J. Algebra Number Theory Appl., 40(5)(2018), 855–867.
- [10] N. J. Groenewald, On weakly and strongly 2-absorbing ideals of non-commutative rings, submitted.
- [11] N. J. Groenewald and B. T. Nguyen, On 2-absorbing modules over noncommutative rings, Int. Electron. J. Algebra, 25(2019), 212-223.

[12] A. A. Tuganbaev, Multiplication modules over noncommutative rings, Sb. Math., 194(12)(2003), 1837–1864.