KYUNGPOOK Math. J. 61(2021), 33-48
https://doi.org/10.5666/KMJ.2021.61.1.33
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

On Weakly Prime and Weakly 2-absorbing Modules over Noncommutative Rings

Nico J. Groenewald
Department of Mathematics, Nelson Mandela University, Port Elizabeth, South Africa
e-mail: nico.groenewald@mandela.ac.za

Abstract. Most of the research on weakly prime and weakly 2-absorbing modules is for modules over commutative rings. Only scatterd results about these notions with regard to non-commutative rings are available. The motivation of this paper is to show that many results for the commutative case also hold in the non-commutative case. Let R be a non-commutative ring with identity. We define the notions of a weakly prime and a weakly 2 -absorbing submodules of R and show that in the case that R commutative, the definition of a weakly 2 -absorbing submodule coincides with the original definition of A . Darani and F. Soheilnia. We give an example to show that in general these two notions are different. The notion of a weakly m-system is introduced and the weakly prime radical is characterized interms of weakly m -systems. Many properties of weakly prime submodules and weakly 2 -absorbing submodules are proved which are similar to the results for commutative rings. Amongst these results we show that for a proper submodule N_{i} of an R_{i}-module M_{i}, for $i=1,2$, if $N_{1} \times N_{2}$ is a weakly 2 -absorbing submodule of $M_{1} \times M_{2}$, then N_{i} is a weakly 2 -absorbing submodule of M_{i} for $i=1,2$

1. Introduction

In 2007 Badawi [3] introduced the concept of 2 -absorbing ideals of commutative rings with identity, which is a generalization of prime ideals, and investigated some properties. He defined a 2 -absorbing ideal P of a commutative ring R with identity to be a proper ideal of R such that if $a, b, c \in R$ and $a b c \in P$, then $a b \in P$ or $b c \in P$ or $a c \in P$. In 2011, Darani and Soheilnia [7] introduced the concepts of 2 -absorbing and weakly 2 -absorbing submodules of modules over commutative rings with identities. A proper submodule P of a module M over a commutative ring R with identity is said to be a 2 -absorbing submodule (weakly 2 -absorbing

Received March 22, 2020; revised September 8, 2020; accepted October 8, 2020.
2010 Mathematics Subject Classification: primary 16D25, secondary 16D80, 16N60.
Key words and phrases: 2-absorbing submodule, weakly 2 -absorbing submodule, prime submodule, weakly prime submodule, weakly prime radical.
submodule) of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in P(0 \neq a b m \in P)$, then $a b M \subseteq P$ or $a m \in P$ or $b m \in P$. One can see that 2 -absorbing and weakly 2 -absorbing submodules are generalizations of prime submodules. Moreover, it is obvious that 2 -absorbing ideals are special cases of 2 -absorbing submodules.

Throughout this paper, all rings are associative with identity elements (not necessarily commutative) and modules are unitary left modules. Let R be a ring and M be an R-module. We write $N \leq M$, if N is a submodule of M. In recent years the study of the absorbing properties of rings and modules, and related notions, have been topics of interest in ring and module theory. In [11] the notion of 2-absorbing modules over non-commutative rings was introduced. In this paper we study the notion of weakly prime and weakly 2 -absorbing modules over non-commutative rings. We prove basic properties of weakly 2 -absorbing submodules. In particular, we show that If R is a commutative ring then the notion of a weakly 2 -absorbing submodule coincides with that of the original definition introduced by Darani and Soheilnia in [7]. For an R-module M and a submodule N of M we have $\left(N:_{R}\right.$ $M)=\{r \in R: r M \subseteq N\}$.

Following [9] a proper ideal P of the ring R is 2-absorbing if $a R b R c \subseteq P$ implies $a b \in P$ or $a c \in P$ or $b c \in P$ for a, b and c elements of R. Following [11] a proper submodule N of the R-module M is a 2-absorbing submodule of M if $a R b R x \subseteq N$ implies $a b \in\left(N:_{R} M\right)$ or $a x \in N$ or $b x \in N$ for $a, b \in R$ and $x \in M$. From [8] a proper submodule P of M is called a prime submodule of M if, for every ideal A of R and every submodule N of $M, A N \subseteq P$ implies either $N \subseteq P$ or $A M \subseteq P$. This is equivalent to $a R x \subseteq P$ implies $a \in(P: M)$ or $x \in P$ for $a \in R$ and $x \in M$. It is clear that a submodule N of an R-module M is prime if and only $P=\left(N:_{R} M\right)$ is a prime ideal of R.

From [10] A proper ideal P of the ring R is weakly prime if $0 \neq a R b \subseteq P$ implies $a \in P$ or $b \in P$ for a and b elements of R.

Definition 1.1.([1, Definition 3.3]) Let M be a left R-module. A proper submodule N of M is called a weakly prime submodule of M if whenever $r \in R$ and $m \in M$ with $0 \neq r R m \subseteq N$ then either $m \in N$ or $r \in\left(N:_{R} M\right)$.

Remark 1.2. Let p and q be two prime numbers. In the \mathbb{Z}-module $\mathbb{Z} p q$, the submodule (0) is weakly prime, but not prime.

Compare the next Theorem with [2, Corollary 2.3].
Theorem 1.3. Let R be a ring, and M an R-module and N a weakly prime submodule of M. If N is not a prime submodule of M, then for any subset P of R such that $P \subseteq\left(N:_{R} M\right)$ we have $P N=0$. In particular $\left(N:_{R} M\right) N=0$.

Proof. Suppose P is a subset of R such that $P \subseteq\left(N:_{R} M\right)$. Suppose $P N \neq 0$. We show that N is prime. Let $r \in R$ and $m \in M$ be such that $r R m \subseteq N$. If $r R m \neq 0$, then $r \in\left(N:_{R} M\right)$ or $m \in N$ since N is weakly prime. So assume $r R m=0$. First assume $r N \neq 0$, say $r n \neq 0$ for some $n \in N$. Now $0 \neq r n \in r R(n+m) \subseteq N$ and N weakly prime, gives $r \in\left(N:_{R} M\right)$ or $(n+m) \in N$. Hence $r \in\left(N:_{R} M\right)$ or $m \in N$ since $n \in N$. So we can assume that $r N=0$. Now suppose that $\operatorname{Pm} \neq 0$,
say $s m \neq 0$ for $s \in P \subseteq\left(N:_{R} M\right)$. We have $0 \neq s m \in(r+s) R m \subseteq N$. Hence $(r+s) \in\left(N:_{R} M\right)$ or $m \in N$. So $r \in\left(N:_{R} M\right)$ or $m \in N$. Hence we can assume that $P m=0$. Since $P N \neq 0$, there exists $t \in P$ and $n \in N$ such that $t n \neq 0$. Now we have $0 \neq t n \in(r+t) R(n+m) \subseteq N$. Again, since N is weakly prime, we get $(r+t) \in\left(N:_{R} M\right)$ or $(m+n) \in N$. Hence $r \in\left(N:_{R} M\right)$ or $m \in N$. Thus N is a prime submodule.

Compare (1) $\Leftrightarrow(2)$ of the next Theorem with [2, Theorem 2.4]
Theorem 1.4. Let N be a proper submodule of a left R-module M. Then the following are equivalent:
(1) N is a weakly prime submodule of M.
(2) For a left ideal P of R and submodule D of M with $0 \neq P D \subseteq N$, either $P \subseteq\left(N:_{R} M\right)$ or $D \subseteq N$.
(3) For any element $a \in R$ and $L \leq M$, if $0 \neq a R L \subseteq N$, then $L \subseteq N$ or $a \in$ $\left(N:_{R} M\right)$.
(4) For any right ideal I of R and $L \leq M$, if $0 \neq I L \subseteq N$, then $L \subseteq N$ or $I \subseteq\left(N:_{R} M\right)$.
(5) For any element $a \in R$ and $L \leq M$, if $0 \neq R a R L \subseteq N$, then $L \subseteq N$ or $a \in$ $\left(N:_{R} M\right)$.
(6) For any element $a \in R$ and $L \leq M$, if $0 \neq R a L \subseteq N$ then $L \subseteq N$ or $a \in$ $\left(N:_{R} M\right)$.

Proof.
(1) \Rightarrow (2) Suppose that N is a weakly prime submodule of M. If N is prime, then the result is clear from [5, Proposition 1.1]. So we can assume that N is weakly prime that is not prime. Let $0 \neq P D \subseteq N$ with $x \in D-N$. We show that $P \subseteq\left(N:_{R} M\right)$. Let $r \in P$. Now $r R x \subseteq r D \subseteq N$. If $0 \neq r R x$, then N weakly prime gives $r \in\left(N:_{R} M\right)$. So assume that $r R x=0$. First suppose that $r D \neq 0$, say $r d \neq 0$ where $d \in D$. If $d \notin N$, then since $0 \neq r R d \subseteq N$ and N weakly prime $r \in\left(N:_{R} M\right)$. If $d \in N$, then $r R(d+x)=r R d \subseteq N$, so $r \in\left(N:_{R} M\right)$ or $(d+x) \in N$. Thus, $r \in\left(N:_{R} M\right)$; hence $P \subseteq\left(N:_{R} M\right)$. So we can assume that $r D=0$. Suppose that $P x \neq 0$, say $a x \neq 0$ where $a \in P$. Now $0 \neq a R x \subseteq N$ and N weakly prime gives $a \in\left(N:_{R} M\right)$. As $(r+a) R x=a R x \subseteq N$, we get $r \in\left(N:_{R} M\right)$, so $P \subseteq\left(N:_{R} M\right)$. Therefore, we can assume that $P x=0$. Since $P D \neq 0$, there exist $b \in P$ and $d_{1} \in D$ such that $b d_{1} \neq 0$. As $\left(N:_{R} M\right) N=0$ (by Theorem 1.3) and $0 \neq b\left(d_{1}+x\right)=b d_{1} \in N$ we can divide the proof into the following two cases:
Case 1. $b \in\left(N:_{R} M\right)$ and $\left(d_{1}+x\right) \notin N$. Since $0 \neq(r+b) R\left(d_{1}+x\right)=b R d_{1} \subseteq$ N, we obtain $(r+b) \in\left(N:_{R} M\right)$, so $r \in\left(N:_{R} M\right)$. Hence $P \subseteq\left(N:_{R} M\right)$.
Case 2. $b \notin\left(N:_{R} M\right)$ and $\left(d_{1}+x\right) \in N$. As $0 \neq b R d_{1} \subseteq N$ we have $d_{1} \in N$, so $x \in N$ which is a contradiction. Thus $P \subseteq\left(N:_{R} M\right)$.
(2) \Rightarrow (1) Suppose that $0 \neq s R m \subseteq N$ where $s \in R$ and $m \in M$. Take $I=R s$ and $D=R m$. Then $0 \neq I D \subseteq N$, so either $I \subseteq\left(N:_{R} M\right)$ or $D \subseteq N$; hence either $r \in\left(N:_{R} M\right)$ or $m \in N$. Thus N is weakly prime.
(2) \Rightarrow (3) Let $a \in R$ and $L \leq M$ such that $0 \neq a R L \subseteq N$. Now $0 \neq R a L \subseteq N$ and from 2. $L \subseteq N$ or $a \in R a \subseteq\left(N:_{R} M\right)$.
(3) \Rightarrow (2) Let P be a left ideal of R and D a submodule of M with $0 \neq P D \subseteq N$. If $D \subseteq N$, then we are done. So suppose $D \nsubseteq N$. We will show that $P \subseteq$ $\left(N:_{R} M\right)$. Let $a \in P$. Hence $a R D \subseteq N$. If $a R D \neq 0$ then it follows from (3) that $a \in\left(N:_{R} M\right)$ and we have $P \subseteq\left(N:_{R} M\right)$. So suppose $a R D=0$. Because $P D \neq 0$, there exists $p \in P$ such that $p R D \neq 0$. We now have $0 \neq p R D=(a+p) R D \subseteq N$. It follows from (3) that $(a+p) \in\left(N:_{R} M\right)$ and we have $P \subseteq\left(N:_{R} M\right)$.
(3) $\Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6)$ is now easy to see.

Remark 1.5. From [5] we know that if N is a prime submodule of an R-module M, then $\left(N:_{R} M\right)$ is a prime ideal of R. Suppose that N is weakly prime which is not prime. Contrary to what happens for a prime submodules, the ideal $\left(N:_{R} M\right)$ is not, in general, a weakly prime ideal of R. For example, let M denote the cyclic \mathbb{Z}-module $\mathbb{Z} / 8 \mathbb{Z}$. Take $N=\{0\}$. Certainly N is a weakly prime submodule of M, but $\left(N:_{R} M\right)=8 Z$ is not a weakly prime ideal of R, but we have the following result:

Proposition 1.6. Let R be a ring with identity M a faithful R-module, and $N a$ weakly prime submodule of M. Then $\left(N:_{R} M\right)$ is a weakly prime ideal of R.
Proof. Assume that M is a faithful R module and let $0 \neq a R b \subseteq\left(N:_{R} M\right)$. Since M is a faithful R module we have $0 \neq a R b M \subseteq N$. It follows that $0 \neq$ $(R a R)(R b R) M \subseteq N$. From Theorem 1.4 we have $(R a R) M \subseteq N$ or $(R b R) M \subseteq N$. Hence $a \in\left(N:_{R} M\right)$ or $b \in\left(N:_{R} M\right)$ and it follows that $\left(N:_{R} M\right)$ is a weakly prime ideal.

From [12] we have that M is a multiplication module over a non-commutative ring if and only if $(N: M) M=N$ for each submodule N of M.

Proposition 1.7. Let M be a multiplication R-module. If $(N: M)$ is a weakly prime ideal of R, then N is a weakly prime submodule of M.
Proof. Let $0 \neq a R m \subseteq N$ with $m \in M$ and $a \notin(N: M)$. Since M is a multiplication module there is an ideal I of R such that $R m=I M$, then $0 \neq R a I M \subseteq N$. Hence $0 \neq R a I \subseteq(N: M)$. Since $(N: M)$ is a weakly prime ideal of R, we have $R a \subseteq(N: M)$ or $I \subseteq(N: M)$. Since $a \notin(N: M)$, we have $I \subseteq(N: M)$. Hence $R m=I M \subseteq N$. Thus $m \in N$ and N is a weakly prime submodule of M.

Remark 1.8. The converse of Proposition 1.7 is not true in general. Suppose that $M=\mathbb{Z} \times \mathbb{Z}$ is an $R=\mathbb{Z} \times \mathbb{Z}$-module and $N=2 \mathbb{Z} \times\{0\}$ is a submodule of M $.(N: M)=0$ is a weakly prime ideal. We have $(0,0) \neq(2,0)(1,1) \in 2 \mathbb{Z} \times\{0\}$. Now,
neither $(2,0) \in(N: M)$ nor $(1,1) \in N$. Hence N is not weakly prime. Notice that M is not a multiplication module.

Lemma 1.9. Let R be a ring, M an R-module and N a weakly prime submodule of M. If $0 \neq a R b R m \subseteq N$ and $a m \notin N$, then $b M \subseteq N$ for all $a ; b \in R$ and $m \in M$.
Proof. Let $a, b \in R$ and $m \in M$. Assume that $0 \neq a R b R m \subseteq N$ and $a m \notin N$. Now we have $0 \neq(R a R)(R b R) m \subseteq N$. From Theorem 1.4 we have $R a R M \subseteq N$ or $R b R m \subseteq N$. Since $a m \notin N$ we have $R b R m \subseteq N$. Because $0 \neq a R b R m$ we must have $0 \neq b R m \subseteq N$. Now, since N is weakly prime we get $b M \subseteq N$ or $m \in N$. Since $a m \notin N$, we must have $b M \subseteq N$ and we are done.

The following result gives characterizations of weakly prime submodules.
Theorem 1.10. Let M be an R-module. The following asserations are equivalent:
(1) P is a weakly prime submodule of M.
(2) $(P: R x)=(P: M) \cup(0: R x)$ for any $x \in M-P$.
(3) $(P: R x)=(P: M)$ or $(P: R x)=(0: R x)$ for any $x \in M-P$.

Proof. (1) $\Rightarrow(2)$ Let $r \in(P: R x)$ and $x \notin P$. Then $r R x \subseteq P$. Suppose $r R x \neq 0$. Hence $r \in(P: M)$ because P is weakly prime and $x \notin P$. If $r R x=0$, then $r \in(0: R x)$. Thus $(P: R x) \subseteq(P: M) \cup(0: R x)$. Now if $r \in(P: M) \cup(0: R x)$ then either $r \in(P: M)$ or $r \in(0: R x)$. Hence, when $r \in(0: R x), r R x=0 \subseteq P$ and so $r \in(P: R x)$. If $r \in(P: M)$ then $r M \subseteq P$, and this implies $r R x \subseteq r M \subseteq P$. Hence $r \in(P: R x)$ and therefore $(P: R x)=(P: M) \cup(0: R x) .(2) \Rightarrow(3)$ Is obvious. (3) \Rightarrow (1) Suppose that $0 \neq r R x \subseteq P$ with $r \in R$ and $x \in M-P$. Then $r \in(P: R x)$ and $r \notin(0: R x)$. It follows from (3) that $r \in(P: R x)=(P: M)$, as required.

Proposition 1.11. Let M_{1} and M_{2} be unitary R-modules over a ring R. Let $M=M_{1} \oplus M_{2}$ and $N \subseteq M_{1} \oplus M_{2}$. Then the following are satisfied:
(1) $N=Q \oplus M_{2}$ is a weakly prime submodule of M if and only if Q is a weakly prime submodule of M_{1} and $r \in R, x \in M_{1}$ with $r R x=0$, but $x \notin Q$, $r \notin\left(Q: M_{1}\right)$ implies $r M_{2}=0$.
(2) $N=M_{1} \oplus Q$ is a weakly prime submodule of M if and only if Q is a weakly prime submodule of M_{2} and $r \in R, x \in M_{2}$ with $r R x=0$, but $x \notin Q$, $r \notin\left(Q: M_{2}\right)$ implies $r M_{1}=0$.

Proof. We will prove (1) and the proof of (2) will be similar. (\Rightarrow) Let $N=Q \oplus M_{2}$ be a weakly prime submodule of M. Let $0 \neq r R q \subseteq Q, q \notin Q$. Then $(q, 0) \notin Q \oplus M_{2}$, while $0 \neq r R(q, 0) \subseteq Q \oplus M_{2}$. Since $N=Q \oplus M_{2}$ is a weakly prime submodule of M we have $r \in\left(M_{1} \oplus M_{2}: Q \oplus M_{2}\right)$. Hence $r M_{1} \subseteq Q$ and Q is a weakly prime submodule of M_{1}. Now, suppose $r \in R, x \in M_{1}$ such that $r R x=0$, but $x \notin Q$, $r \notin\left(Q: M_{1}\right)$. Assume that $r M_{2} \neq 0$, so there esists $m \in M_{2}$ such that $r m \neq 0$. Thus $(0,0) \neq r R(x, m)=(r R x, r R m)=(0, r R m) \subseteq Q \oplus M_{2}=N . N$ is a weakly
prime submodule of M, so either $(x, m) \in Q \oplus M_{2}$ or $r \in\left(Q \oplus M_{2}: M_{1} \oplus M_{2}\right)$. Thus either $x \in Q$ or $r \in\left(Q: M_{1}\right)$ which is a contradiction with hypothesis, hence $r M_{2}=0$. (\Leftarrow) Let $r \in R$ and $(x, y) \in M$. Assume $(0,0) \neq r R(x, y) \subseteq Q \oplus M_{2}$, so if $r R x \neq 0$, then $x \in Q$ or $r \in\left(Q: M_{1}\right)$, since Q is a weakly prime submodule of M_{1}. Thus either $(x, y) \in Q \oplus M_{2}=N$ or $r \in(N: M)$. If $r R x=0$, suppose $x \notin Q, r \notin\left(Q, M_{1}\right)$. Then by hypothesis $r M_{2}=0$ and so $r R y \subseteq r M_{2}=0$. Hence $r R(x, y)=(0,0)$ which is a contradiction. Thus either $x \in Q$ or $r \in\left(Q: M_{1}\right)$ and hence either $(x, y) \in Q \oplus M_{2}=N$ or $r \in\left(Q \oplus M_{2}: M_{1} \oplus M_{2}\right)$.

Remark 1.12. Let M_{1} and M_{2} be R-modules. If (0) is a prime submodule of M_{1}, then $(0) \oplus M_{2}$ is a weakly prime submodule of $M_{1} \oplus M_{2}$.
Proof. Let $r \in R$ and $(x, y) \in M$. If $(0,0) \neq r R(x, y) \subseteq(0) \oplus M_{2}$, then $r R x=0$ and $r R y \subseteq M_{2}$. Since (0) is a prime submodule of M_{1}, either $x=0$ or $r \in\left((0): M_{1}\right)$. Hence either $(x, y)=(0, y) \in(0) \oplus M_{2}$ or $r \in\left((0) \oplus M_{2}: M_{1} \oplus M_{2}\right)$, that is $(0) \oplus M_{2}$ is a weakly prime submodule of $M_{1} \oplus M_{2}$.

Proposition 1.13. Let M_{1} and M_{2} be R-modules. If $U \oplus W$ is a weakly prime submodule of $M_{1} \oplus M_{2}$, then U and W are weakly prime submodules of M_{1} and M_{2} respectively.
Proof. The proof is straight forward so it is omitted.
Remark 1.14. The converse of Proposition 1.13 is not true in general as the following example shows.

Example 1.15. Suppose $M=\mathbb{Z} \oplus \mathbb{Z}$ is a \mathbb{Z}-module and consider the submodule $N=p \mathbb{Z} \oplus\{0\}$ of $M . p \mathbb{Z}$ is a prime submodule of the \mathbb{Z}-module \mathbb{Z} and hence also a weakly prime submodule and $\{0\}$ is a weakly prime submodule of the \mathbb{Z} module $\mathbb{Z} . \quad N=p \mathbb{Z} \oplus\{0\}$ is not weakly prime since $(0,0) \neq p(1,0) \in p \mathbb{Z} \oplus\{0\}$ but $p \notin\left(p \mathbb{Z} \oplus\{0\}:_{\mathbb{Z}} \mathbb{Z} \oplus \mathbb{Z}\right)$ and $(1,0) \notin p \mathbb{Z} \oplus\{0\}$.

2. The Weakly Prime Radical

We begin this section with the definition of weakly m-systems.
Definition 2.1 Let R be a ring and M be an R-module. A nonempty set $S \subseteq$ $M \backslash\{0\}$ is called a weakly m-system if, for each ideal A of R, and for all submodules $K, L \subseteq M$, if $(K+L) \cap S \neq \emptyset,(K+A M) \cap S \neq \emptyset$, and $A L \neq 0$ then $(K+A L) \cap S \neq \emptyset$.

Proposition 2.2. Let M be an R-module. Then a submodule P of M is weakly prime if and only if $M \backslash P$ is a weakly m-system.
Proof. Suppose $S=M \backslash P$. Let A be an ideal in R and K and L be submodules of M such that $(K+L) \cap S \neq \emptyset,(K+A M) \cap S \neq \emptyset$ and $A L \neq 0$. If $(K+A L) \cap S=\emptyset$ then $K+A L \subseteq P$. Hence $A L \subseteq P$ and since P is weakly prime, and $A L \neq 0, L \subseteq P$ or $A M \subseteq P$. It follows that $(K+L) \cap S=\emptyset$ or $(K+A M) \cap S=\emptyset$, a contradiction. Therefore, S is a weakly m-system in M. Conversely, let $S=M \backslash P$ be a weakly m-system in M. Suppose $A L \subseteq P$ and $A L \neq 0$, where A is an ideal of R and L is
a submodule M. If $L \nsubseteq P$ and $A M \nsubseteq P$, then $L \cap S \neq \emptyset$ and $A M \cap S \neq \emptyset$. Thus, $A L \cap S \neq \emptyset$, a contradiction. Therefore, P is a weakly prime submodule of M.

The following proposition offers several characterizations of a weakly m-system S when it is the complement of a submodule.

Proposition 2.3. Let R be a ring and M be an R-module. Let P be a proper submodule of M, and let $S:=M \backslash P$. Then the following statements are equivalent:
(1) P is weakly prime;
(2) S is a weakly m-system;
(3) for each left ideal $A \subseteq R$, and for every submodule $L \leqq M$, if $L \cap S \neq \emptyset$, $A M \cap S \neq \emptyset$ and $A L \neq 0$ then $A L \cap S \neq \emptyset ;$
(4) for each ideal $A \subseteq R$, and for every $m \in M$, if $R m \cap S \neq \emptyset, A M \cap S=\emptyset$ and $A L \neq 0$, then $A R m \cap S \neq \emptyset ;$
(5) for each $a \in R$, and for each $m \in M$, if $R m \cap S \neq \emptyset$, aM $\cap S \neq \emptyset$ and $a R m \neq 0$, then $a R m \cap S \neq \emptyset$.

Proof. (1) \Leftrightarrow (2) follows from Proposition 2.2. (2) $\Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$ is clear (5) $\Rightarrow(1)$. Suppose $a \in R$ and $m \in M$ with $0 \neq a R m \subseteq P$. If $R m \nsubseteq P$ and $a M \nsubseteq P$, then $R m \cap S \neq \emptyset$ and $a M \cap S \neq \emptyset$ and $a R m \neq 0$. From (5) $a R m \cap S \neq \emptyset$. Hence $a R m \nsubseteq P$ a contradiction. Hence $R m \subseteq P$ or $a M \subseteq P$ and P is weakly prime.

Proposition 2.4. Let M be an R-module, $S \subseteq M$ be a weakly m-system, and let P be a submodule of M maximal with respect to the property that P is disjoint from S. Then P is a weakly prime submodule.
Proof. Suppose $0 \neq A L \subseteq P$, where A is an ideal of R and $L \leqq M$. If $L \nsubseteq P$ and $A M \nsubseteq P$, then by the maximal property of P, we have, $(P+L) \cap S \neq \emptyset$ and $(P+A M) \cap S \neq \emptyset$. Thus, since S is a weakly m-system $(P+A L) \cap S \neq \emptyset$ and it follows that $P \cap S \neq \emptyset$, a contradiction. Thus, P must be a weakly prime submodule.

Next we need a generalization of the notion of $\sqrt{ } N$ for any submodule N of M. We adopt the following:
Definition 2.5. Let R be a ring and M be an R-module. For a submodule N of M, if there is a weakly prime submodule containing N, then we define $\sqrt{ } N:=\{m \in M$: every weakly m-system containing m meets $N\}$. If there is no weakly prime submodule containing N, then we put $\sqrt{ } N=M$.
Theorem 2.6. Let M be an R-module and $N \leq M$. Then either $\sqrt{ } N=M$ or $\sqrt{ } N$ equals the intersection of all the weakly prime submodules of M containing N.
Proof. Suppose that $\sqrt{ } N \neq M$. This means that $\{P \mid P$ is a weakly prime submodule of M and $N \subseteq P\} \neq \emptyset$. We first prove that $\sqrt{ } N \subseteq\{P \mid P$ is a weakly prime submodule of M and $N \subseteq P\}$. Let $m \in \sqrt{ } N$ and P be any weakly prime submodule
of M containing N. Consider the m-system $M \backslash P$. This m-system cannot contain m, for otherwise it meets N and hence also P. Therefore, we have $m \in P$. Conversely, assume $m \notin \sqrt{ } N$. Then, by Definition 2.5 , there exists an m-system S containing m which is disjoint from N. By Zorn's Lemma, there exists a submodule $P \supseteq N$ which is maximal with respect to being disjoint from S. By Proposition 2.4, P is a weakly prime submodule of M, and we have $m \notin P$, as desired.

3. Weakly 2-absorbing Submodules

From [11] we have the following:
Definition 3.1. Let P be a proper ideal of a ring R. Then P is a 2 -absorbing ideal of R if $a R b R \subseteq P$ implies $a b \in P$ or $b c \in P$ or $a c \in P$ for all $a ; b ; c \in R$.
Definition 3.2. Let R be a ring and N be a proper submodule of an R-module M. Then N is 2-absorbing submodule of M if $a R b R m \subseteq N$ implies $a b M \subseteq N$ i.e. $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$ for all $a ; b \in R$ and $m \in M$.
Remark 3.3. If R is a commutative ring then this notion of a 2 -absorbing submodule coincides with that of Darani and Soheilnia [7].

We now have the following:
Definition 3.4. Let R be a ring and N be a proper submodule of an R-module M. Then N is a weakly 2-absorbing submodule of M if $0 \neq a R b R m \subseteq N$ implies $a b M \subseteq N$ i.e. $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$ for all $a ; b \in R$ and $m \in M$.

Remark 3.5. Every 2-absorbing submodule is weakly 2-absorbing but the converse does not necessarily hold. For example consider the case where $R=\mathbb{Z}, M=\mathbb{Z} / 30 \mathbb{Z}$ and $N=0$. Then 2.3. $(5+30 \mathbb{Z})=0 \in N$ while $2.3 \notin\left(N:_{R} M\right), 2 .(5+30 Z) \notin N$ and $3 .(5+30 Z) \notin N$. Therefore N is not 2 -absorbing while it is weakly 2 -absorbing.

Proposition 3.6. Let $x \in M$ and $a \in R$. Then if $a n n_{l}(x) \subseteq(R x: M)$, the submodule $R x$ is 2-absorbing if and only if $R x$ is weakly 2- absorbing.
Proof. Let $R x$ be a weakly 2-absorbing submodule of M and suppose $r, s \in R$ and $m \in M$ with $r R s R m \subseteq R x$. Since $R x$ is a weakly 2 -absorbing submodule, we may assume $r R s R m=0$, otherwise $R x$ is 2-absorbing. Now $r R s R(x+m) \subseteq R x$. If $r R s R(x+m) \neq 0$ then we have $r s \in(R x: M)$ or $r(x+m) \in R x$ or $s(x+m) \in R x$, as $R x$ is a weakly 2 -absorbing submodule. Hence $r s \in(R x: M)$ or $r m \in R x$ or $s m \in R x$. Now let $r R s R(x+m)=0$. Then $r R s R m=0$ implies $r R s R x=0$. Hence $r s \in a n n_{l}(x) \subseteq(R x: M)$. Thus $R x$ is 2-absorbing.
Proposition 3.7. Let R be a ring and N be a proper submodule of an R-module M. If N is weakly prime, then it is weakly 2-absorbing.

Proof. Assume N is a weakly prime submodule of the R-module M and $0 \neq$ $a R b R m \subseteq N$ for all $a ; b \in R$ and $m \in M$. Suppose $a m \notin N$. It now follows from Proposition 1.9 that $b M \subseteq N$ and consequently $a b M \subseteq N$. Hence N is weakly 2-absorbing.

Compare the following theorem with that of [7, Theorem 2.3(ii)].
Theorem 3.8. The intersection of each pair of weakly prime submodules of an R-module M is a weakly 2-absorbing submodule of M.
Proof. Let N and K be two weakly prime submodules of M. If $N=K$, then $N \cap K$ is a weakly prime submodule of M so that $N \cap K$ is a weakly 2 -absorbing submodule of M. Assume that N and K are distinct. Since N and K are proper submodules of M, it follows that $N \cap K$ is a proper submodule of M. Next, let $a, b \in R$ and $m \in M$ be such that $0 \neq a R b R m \subseteq N \cap K$ but $a m \notin N \cap K$ and $a b \notin(N \cap K: M)$. Then, we can conclude that (a) $a m \notin N$ or $a m \notin K$, and (b) $a b \notin\left(N:_{R} M\right)$ or $a b \notin\left(K:_{R} M\right)$. These two conditions give 4 cases:
(1) $a m \notin N$ and $a b \notin\left(N:_{R} M\right)$;
(2) $a m \notin N$ and $a b \notin\left(K:_{R} M\right)$;
(3) $a m \notin K$ and $a b \notin\left(N:_{R} M\right)$;
(4) $a m \notin K$ and $a b \notin\left(K:_{R} M\right)$.

We first consider Case(1). Since $0 \neq a R b R m \subseteq N \cap K \subseteq N$ and $a m \notin N$, it follows from Proposition 1.9 that $b M \subseteq N$. This is a contradiction because $a b \notin\left(N:_{R} M\right)$. Hence Case(1) does not occur. Similarly, Case(4) is not possible. Next, Case(2) is considered. Again, we obtain that $b M \subseteq N$ and then $b m \in N$. Since $0 \neq a R b R m \subseteq K$ it follows that $0 \neq(R a R)(R b R) m) \subseteq K$. Hence, from the fact that K is weakly prime and from Theorem 1.4 it follows that $a M \subseteq R a R M \subseteq K$ or $b m \in R b R m \subseteq K$ If $a M \subseteq K$, then $a b M \subseteq a M \subseteq K$ which contradicts $a b \notin\left(K:_{R} M\right)$. Thus $b m \in K$. Hence $b m \in N \cap K$. The proof of Case(3) is similar to that of Case(2). Hence $N \cap K$ is a weakly 2 -absorbing submodule of M.

Definition 3.9. Let N be a weakly 2-absorbing submodule of M. (a, b, m) is called a triple-zero of N if $a R b R m=0, a b \notin\left(N:_{R} M\right), a m \notin N$ and $b m \notin N$.

The following result is an analogue of $[6$, Theorem 1].
Theorem 3.10. Let N be weakly 2-absorbing submodule of M and (a, b, m) be a triple-zero of N for some $a, b \in R$ and $m \in M$. Then the followings hold.
(1) $a R b N=a\left(N:_{R} M\right) m=b\left(N:_{R} M\right) m=0$.
(2) $a\left(N:_{R} M\right) N=b\left(N:_{R} M\right) N=\left(N:_{R} M\right) b N=\left(N:_{R} M\right) b m=\left(N:_{R}\right.$ $M)^{2} m=0$.

Proof. Suppose that (a, b, m) is a triple-zero of N for some a, $b \in R$ and $m \in M$.
(1) Assume that $a R b N \neq 0$. Then there is an element $n \in N$ such that $a R b R n \neq$ 0 . Now $a R b R(m+n)=a R b R m+a R b R n=a R b R n \neq 0$ since $a R b R m=0$ because (a, b, m) is a triple-zero of N. Since $0 \neq a R b R(m+n) \subseteq N$ and N weakly 2-absorbing we have $a b \in\left(N:_{R} M\right)$ or $a(m+n) \in N$ or $b(m+n) \in N$. Since (a, b, m) is a triple-zero of $N, a b \notin\left(N:_{R} M\right)$. Hence $a(m+n) \in N$
or $b(m+n) \in N$ and consequently $a m \in N$ or $b m \in N$ a contradiction. Hence $a R b N=0$. Now, we suppose that $a\left(N:_{R} M\right) m \neq 0$. Thus there exists an element $r \in\left(N:_{R} M\right)$ such that $\operatorname{arm} \neq 0$. Hence $a R(r+b) r m=$ $a R r R m+a R b R m=a R r R m$. Since $0 \neq a r m \in a R r R m \subseteq N$ and N weakly 2-absorbing we have $a(r+b) \in\left(N:_{R} M\right)$ or $a m \in N$ or $(r+b) m \in N$. Hence $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$ a contradiction since (a, b, m) is a triple-zero of N. Similarly, it can be easily seen that $b\left(N:_{R} M\right) m=0$.
(2) Assume that $a\left(N:_{R} M\right) N \neq 0$. Then there are $r \in\left(N:_{R} M\right), n \in N$ such that $\operatorname{arn} \neq 0$. By (1), we get $a(b+r)(m+n)=a b m+a b n+a r m+a r n=a r n \neq$ 0 . Now $0 \neq a R(b+r) R(m+n) \subseteq N$. Therefore, we have $a(b+r) \in\left(N:_{R} M\right)$ or $a(m+n) \in N$ or $(b+r)(m+n) \in N$ and we obtain $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$, a contradiction. Hence $a\left(N:_{R} M\right) N=0$. In a similar way, we get $b\left(N:_{R} M\right) N=0$. Now, we suppose that $\left(N:_{R} M\right) b N \neq 0$. Then there are $r \in\left(N:_{R} M\right), n \in N$ such that $r b n \neq 0$. Now, from above $(a+r) b(n+m)=a b n+a b m+r b n+r b m=r b n \neq 0$. Hence $0 \neq$ $(a+r) R b R(n+m) \subseteq N$ and since N is weakly 2-absorbing $(a+r) b \in\left(N:_{R} M\right)$ or $(a+r)(n+m) \in N$ or $b(n+m) \in N$. Hence $a b \in\left(N:{ }_{R} M\right)$ or $a m \in N$ or $b m \in N$ a contradiction since (a, b, m) is a triple-zero of N. Now, we suppose that $\left(N:_{R} M\right) b m \neq 0$. Then there is $r \in\left(N:_{R} M\right)$ such that $r b m \neq 0$. Hence $0 \neq r b m=(a+r) b m \in(a+r) R b R m=r R b R m \subseteq N$. Since N is weakly 2-absorbing, we have $(a+r) b \in\left(N:_{R} M\right)$ or $(a+r) m \in N$ or $b m \in N$. Therefore $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$ a contradiction since (a, b, m) is a triple-zero of N. Hence $\left(N:_{R} M\right) b m=0$. Lastly, we show that $\left(N:_{R} M\right)^{2} m=0$. Let $\left(N:_{R} M\right)^{2} m \neq 0$. Thus there exist $r, s \in\left(N:_{R} M\right)$ where $r s m \neq 0$. By (1), we get $(a+r)(b+s) m=r s m \neq 0$. Thus we have $0 \neq(a+r) R(b+s) R m \subseteq N$. Hence $(a+r)(b+s) \in\left(N:_{R} M\right)$ or $(a+r) m \in N$ or $(b+s) m \in N$.
Consequently, $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$ a contradiction, since (a, b, m) is a triple-zero of N. Therefore $(N: M)^{2} m=0$.

The following result is an analogue of [6, Lemma 1].
Proposition 3.11. Assume that N is a weakly 2-absorbing submodule of an R module M that is not 2-absorbing. Then $\left(N:_{R} M\right)^{2} N=0$. In particular, $\left(N:_{R}\right.$ $M)^{3} \subseteq A n n(M)$.
Proof. Suppose that N is a weakly 2 -absorbing submodule of an R-module M that is not 2 -absorbing. Then there is a triple-zero (a, b, m) of N for some $a, b \in R$ and $m \in M$. Assume that $\left(N:_{R} M\right)^{2} N \neq 0$. Thus there exist $r, s \in\left(N:_{R} M\right)$ and $n \in N$ with $r s n \neq 0$. By Theorem 3.10 , we get $(a+r)(b+s)(n+m)=r s n \neq 0$. Then we have $0 \neq(a+r) R(b+s) R(n+m) \subseteq N$. Since N is weakly 2-absorbing we have $(a+r)(b+s) \in\left(N:_{R} M\right)$ or $(a+r)(n+m) \in N$ or $(b+s)(n+m) \in N$ and so $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$, which is a contradiction.

Thus $\left(N:_{R} M\right)^{2} N=0$. We get $\left(N:_{R} M\right)^{3} \subseteq\left(\left(N:_{R} M\right)^{2} N: M\right)=(0:$ $M)=\operatorname{Ann}(M)$.

4. On a Question from Badawi and Yousefian

In [4], the authors asked the following question:
Question. Suppose that L is a weakly 2 -absorbing ideal of a ring R and $0 \neq I J K \subseteq$ L for some ideals I, J, K of R. Does it imply that $I J \subseteq L$ or $I K \subseteq L$ or $J K \subseteq L$?

This section is devoted to studying the above question and its generalization in modules over non-commutative rings.

Definition 4.1. Let N be a weakly 2 -absorbing submodule of an R-module M and let $0 \neq I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of $M . N$ is called free triple-zero in regard to I_{1}, I_{2}, K if (a, b, m) is not a triple-zero of N for every $a \in I_{1}, b \in I_{2}$ and $m \in K$.

The following result and its proof are analogous of [6, Lemma 2].
Lemma 4.2. Let N be a weakly 2-absorbing submodule of M. Assume that aRbK \subseteq N for some $a, b \in R$ and some submodule K of M where (a, b, m) is not a triple-zero of N for every $m \in K$. If $a b \notin\left(N:_{R} M\right)$, then $a K \subseteq N$ or $b K \subseteq N$.
Proof. Assume that $a K \nsubseteq N$ and $b K \nsubseteq N$. Then there are $x, y \in K$ such that $a x \notin N$ and $b y \notin N$. We get $b x \in N$ since N is a weakly 2 -absorbing submodule, (a, b, x) is not a triple-zero of $N, a b \notin\left(N:_{R} M\right)$ and $a x \notin N$. In a similar way, $a y \in N$. Now, $a R b R(x+y) \subseteq N$ and since $(a, b, x+y)$ is not a triple-zero of N and $a b \notin\left(N:_{R} M\right)$ we have $a(x+y) \in N$ or $b(x+y) \in N$. Assume that $a(x+y)=(a x+a y) \in N$. As $a y \in N$, we get $a x \in N$, a contradiction. Assume that $b(x+y)=(b x+b y) \in N$. As $b x \in N$, we get $b y \in N$, a contradiction again. Hence we obtain that $a K \subseteq N$ or $b K \subseteq N$.

Let N be a weakly 2 -absorbing submodule of an R-module M and $I_{1} I_{2} K \subseteq N$ for some for some ideals I_{1}, I_{2} of R and some submodule K of M where N is free triple-zero in regard to I_{1}, I_{2}, K. Note that if $a \in I_{1}, b \in I_{2}$ and $m \in K$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$.

The following result and its proof are analogous of [6, Theorem 1] and its proof.
Theorem 4.3. Assume that N is a weakly 2-absorbing submodule of an R-module M and $0 \neq I J K \subseteq N$ for some ideals I, J of R and some submodule K of M where N is free triple-zero in regard to I, J, K. Then $I J \subseteq\left(N:_{R} M\right)$ or $I K \subseteq N$ or $J K \subseteq N$.
Proof. Let N be a weakly 2 -absorbing submodule of an R-module M and $0 \neq$ $I J K \subseteq N$ for some ideals I, J of R and some submodule K of M where N is free triple-zero in regard to I, J, K. Suppose $I J \nsubseteq\left(N:_{R} M\right)$. We show that $I K \subseteq N$ or $J K \subseteq N$. Assume $I K \nsubseteq N$ and $J K \nsubseteq N$. Then $a_{1} K \nsubseteq N$ and $a_{2} K \nsubseteq N$ where $a_{1} \in I$ and $a_{2} \in J$. From Lemma $4.2 a_{1} a_{2} \in\left(N:_{R} M\right)$ since $a_{1} R a_{2} K \subseteq I J K \subseteq N$ and $a_{1} K \nsubseteq N$ and $a_{2} K \nsubseteq N$. By our assumption, there are $b_{1} \in I$ and $b_{2} \in J$ such that $b_{1} b_{2} \notin\left(N:_{R} M\right)$. By Lemma 4.2, we get $b_{1} K \subseteq N$ or $b_{2} K \subseteq N$ since $b_{1} R b_{2} K \subseteq I J K \subseteq N$ and $b_{1} b_{2} \notin\left(N:_{R} M\right)$. We have the following cases: Case (1)
$b_{1} K \subseteq N$ and $b_{2} K \nsubseteq N$: Since $a_{1} R b_{2} K \subseteq I J K \subseteq N$ and $a_{1} K \nsubseteq N$ and $b_{2} K \nsubseteq N$ it follows from Lemma 4.2 that $a_{1} b_{2} \in\left(N:_{R} M\right)$. Since $b_{1} K \subseteq N$ and $a_{1} K \nsubseteq N$, we conclude $\left(a_{1}+b_{1}\right) K \nsubseteq N$. On the other hand since $\left(a_{1}+b_{1}\right) R b_{2} K \subseteq N$ and neither $\left(a_{1}+b_{1}\right) K \subseteq N$ nor $b_{2} K \subseteq N$, we get that $\left(a_{1}+b_{1}\right) b_{2} \in\left(N:_{R} M\right)$ by Lemma 4.2. But, because $\left(a_{1}+b_{1}\right) b_{2}=\left(a_{1} b_{2}+b_{1} b_{2}\right) \in\left(N:_{R} M\right)$ and $\left(a_{1}+b_{1}\right) b_{2} \in\left(N:_{R} M\right)$, we get $b_{1} b_{2} \in\left(N:_{R} M\right)$ which is a contradiction. Case (2) $b_{2} K \subseteq N$ and $b_{1} K \nsubseteq N$: By a similar argument to case (1) we get a contradiction. Case (3) $b_{1} K \subseteq N$ and $b_{2} K \subseteq N: b_{2} K \subseteq N$ and $a_{2} K \nsubseteq N$ gives $\left(a_{2}+b_{2}\right) K \nsubseteq N$. But $a_{1} R\left(a_{2}+b_{2}\right) K \subseteq N$ and neither $a_{1} K \subseteq N$ nor $\left(a_{2}+b_{2}\right) K \subseteq N$, hence $a_{1}\left(a_{2}+b_{2}\right) \in\left(N:_{R} M\right)$ by Lemma 4.2. Since $a_{1} a_{2} \in\left(N:_{R} M\right)$ and $\left(a_{1} a_{2}+a_{1} b_{2}\right) \in\left(N:_{R} M\right)$, we have $a_{1} b_{2} \in$ $\left(N:_{R} M\right)$. Since $\left(a_{1}+b_{1}\right) R a_{2} K \subseteq N$ and neither $a_{2} K \subseteq N$ nor $\left(a_{1}+b_{1}\right) K \subseteq N$, we conclude $\left(a_{1}+b_{1}\right) a_{2} \in\left(N:_{R} M\right)$ by Lemma 4.2. But $\left(a_{1}+b_{1}\right) a_{2}=a_{1} a_{2}+b_{1} a_{2}$, so $\left(a_{1} a_{2}+b_{1} a_{2}\right) \in\left(N:_{R} M\right)$ and since $a_{1} a_{2} \in\left(N:_{R} M\right)$, we get $b_{1} a_{2} \in\left(N:_{R} M\right)$. Now, since $\left(a_{1}+b_{1}\right) R\left(a_{2}+b_{2}\right) K \subseteq N$ and neither $\left(a_{1}+b_{1}\right) K \subseteq N$ nor $\left(a_{2}+b_{2}\right) K \subseteq$ N, we have $\left(a_{1}+b_{1)}\left(a_{2}+b_{2}\right)=\left(a_{1} a_{2}+a_{1} b_{2}+b_{1} a_{2}+b_{1} b_{2}\right) \in\left(N:_{R} M\right)\right.$ by Lemma 4.2. But $a_{1} a_{2}, a_{1} b_{2}, b_{1} a_{2} \in\left(N:_{R} M\right)$, so $b_{1} b_{2} \in\left(N:_{R} M\right)$ which is a contradiction. Consequently $I K \subseteq N$ or $J K \subseteq N$.

5. Weakly 2-absorbing Submodules of Product Modules

Proposition 5.1. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ where M_{1} is an R_{1} module and $0 \neq M_{2}$ is an R_{2} module. If N_{1} is a proper submodule of M_{1} then the following statements are equivalent:
(1) N_{1} is a 2-absorbing submodule of M_{1};
(2) $N_{1} \times M_{2}$ is a 2-absorbing submodule of $M_{1} \times M_{2}$;
(3) $N_{1} \times M_{2}$ is a weakly 2-absorbing submodule of $M_{1} \times M_{2}$.

Proof. (1) $\Leftrightarrow(2)$ follows from [11, Theorem 2.5]. (2) \Rightarrow (3) is clear. We show $(3) \Rightarrow(1)$ Let $a, b \in R_{1}$ and $x \in M_{1}$ such that $a R_{1} b R_{1} x \subseteq N_{1}$. For every $0 \neq$ $y \in M_{2}$ we have $(a, 1)(b, 1)(x, y)=(a b x, y) \neq(0,0)$. Now $(0,0) \neq(a b x, y) \in$ $a R_{1} b R_{1} x \times 1 R_{1} 1 R_{1} y \subseteq N_{1} \times M_{2}$. Since $N_{1} \times M_{2}$ is a weakly 2 -absorbing submodule of $M_{1} \times M_{2}$, we get $(a, 1)(b, 1) \in\left(M_{1} \times M_{2}: N_{1} \times M_{2}\right)$ or $(a, 1)(x, y) \in N_{1} \times M_{2}$ or $(b, 1)(x, y) \in N_{1} \times M_{2}$. Hence $a b \in\left(N_{1}: M_{1}\right)$ or $a x \in N_{1}$ or $b x \in N_{1}$.

Proposition 5.2. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ where $0 \neq M_{1}$ is an R_{1} module and M_{2} is an R_{2} module. If N_{2} is a proper submodule of M_{2} then the following statements are equivalent:
(1) N_{2} is a 2-absorbing submodule of M_{1};
(2) $M_{1} \times N_{2}$ is a 2-absorbing submodule of $M_{1} \times M_{2}$;
(3) $M_{1} \times N_{2}$ is a weakly 2-absorbing submodule of $M_{1} \times M_{2}$.

Proof. Similar to Proposition 5.1.
Proposition 5.3. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ where M_{1} is an R_{1} module and $0 \neq M_{2}$ is an R_{2} module. Let $N_{1} \neq M_{1}$. If N_{1} is a weakly prime submodule of M_{1} and 0 a prime submodule of M_{2} then $N_{1} \times\{0\}$ is a weakly 2-absorbing submodule of $M_{1} \times M_{2}$.
Proof. Assume $(0,0) \neq(a, b) R(c, d) R(x, y) \subseteq N_{1} \times\{0\}$ where $(a, b) \in R,(c, d) \in R$ and $(x, y) \in M$. Hence $0 \neq a R_{1} c R_{1} x \subseteq N_{1}$ and $b R_{2} d R_{2} y=0$. Since N_{1} is a weakly prime submodule of M_{1} we get $a \in\left(N_{1}: M_{1}\right)$ or $c \in\left(N_{1}: M_{1}\right)$ or $x \in N_{1}$. Also, since 0 is a prime submodule of M_{2} and $b R_{2} d R_{2} y=0$ we have $b \in\left(0: M_{2}\right)$ or $d \in\left(0: M_{2}\right)$ or $y=0$. In any of the above cases we have $(a, b)(c, d) \in\left(N_{1} \times\{0\}: M\right)$ or $(a, b)(x, y) \in N_{1} \times\{0\}$ or $(c, d)(x, y) \in N_{1} \times\{0\}$.

Proposition 5.4. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ where $0 \neq M_{1}$ is an R_{1} module and $0 \neq M_{2}$ is an R_{2} module. If $N=N_{1} \times N_{2}$ is a weakly 2-absorbing submodule of $M, N_{1} \neq M_{1}$, and $N_{2} \neq M_{2}$, then N_{1} and N_{2} are weakly prime submodules of M_{1} and M_{2} respectively.
Proof. Let $0 \neq r R x \subseteq N_{1}$, where $r \in R_{1}$ and $x \in M_{1}$. Consider $z \in M_{2} \backslash N_{2}$. Then $(0,0) \neq(1,0) R(r, 1) R(x, z) \subseteq N$ and as N is weakly 2-absorbing, $(1,0)(r, 1) \in(N$: $M)$ or $(r, 1)(x, z) \in N$ or $(1,0)(x, z) \in N$. Note that since $z \in M_{2} \backslash N_{2},(r, 1)(x, z) \notin$ N.Thus $(1,0)(r, 1) \in(N: M)=\left(N_{1}: M_{1}\right) \times\left(N_{2}: M_{2}\right)$ or $(1,0)(x, z) \in N$. Therefore, $r \in\left(N_{1}: M_{1}\right)$ or $x \in N_{1}$. This shows that N_{1} is a weakly prime submodule of M_{1}. Similarly we can show that N_{2} is a weakly prime submodule of M_{2}.

Proposition 5.5. Let N_{i} be a proper submodule of an R_{i}-module M_{i}, for $i=1,2$. If $N_{1} \times N_{2}$ is a weakly 2-absorbing submodule of $M_{1} \times M_{2}$, then
(1) N_{1} is a weakly 2-absorbing submodule of M_{1},
(2) N_{2} is a weakly 2-absorbing submodule of M_{2}.

Proof.
(1) Suppose that $N_{1} \times N_{2}$ is a weakly 2-absorbing submodule of $M_{1} \times M_{2}$. Let $a_{1}, a_{2} \in R_{1}$ and $m \in M_{1}$ such that $0 \neq a_{1} R_{1} a_{2} R_{1} m \subseteq N_{1}$. Clearly, $(0,0) \neq$ $\left(a_{1}, 1\right)\left(R_{1} \times R_{2}\right)\left(a_{2}, 1\right)\left(R_{1} \times R_{2}\right)\left(m, m_{2}\right)$ for any $m_{2} \in N_{2}$. Hence $(0,0) \neq$ $\left(a_{1}, 1\right)\left(R_{1} \times R_{2}\right)\left(a_{2}, 1\right)\left(R_{1} \times R_{2}\right)\left(m, m_{2}\right) \subseteq a_{1} R_{1} a_{2} R_{1} m \times 1 R_{2} 1 R_{2} m_{2} \subseteq$ $N_{1} \times N_{2}$. Since $N_{1} \times N_{2}$ is a weakly 2 -absorbing submodule of $M_{1} \times M_{2}$, $\left(a_{1}, 1\right)\left(a_{2}, 1\right) \in\left(N_{1} \times N_{2}: M_{1} \times M_{2}\right)$ or $\left(a_{1}, 1\right)\left(m, m_{2}\right) \in N_{1} \times N_{2}$ or $\left(a_{2}, 1\right)\left(m, m_{2}\right) \in N_{1} \times N_{2}$. Consequently $a_{1} a_{2} \in\left(N_{1}: M_{1}\right)$ or $a_{1} m \in N_{1}$ or $a_{2} m \in N_{1}$. Hence N_{1} is a weakly 2-absorbing submodule of M_{1}.
(2) This follows as in part (1).

The converse of the above proposition is no true in general:

Example 5.6. Suppose that $M=\mathbb{Z} \times \mathbb{Z}$ is an $R=\mathbb{Z} \times \mathbb{Z}$-module and $N=p \mathbb{Z} \times\{0\}$ is a submodule of M where $p \mathbb{Z}$ is a prime submodule and hence a weakly 2 -absorbimg submodule of the \mathbb{Z} module \mathbb{Z} and $\{0\}$ is weakly 2 -absorbing.submodule of the \mathbb{Z} module \mathbb{Z}. Then $(N: M)=0$. Assume that $(0,0) \neq(p, 1)(1,0)(1,1) \in p \mathbb{Z} \times\{0\}$. Then neither $(p, 1)(1,0) \in(N: M)$ nor $(p, 1)(1,1) \in N$ nor $(1,0)(1,1) \in N$. Hence N is not weakly 2 -absorbing.

Proposition 5.7. Let N_{i} be a proper submodule of an R-module M_{i}, for $i=1,2$ Then the following conditions are equivalent:
(1) $N_{1} \times M_{2}$ is a weakly 2-absorbing submodule of $M_{1} \times M_{2}$;
(2) (a) N_{1} is a weakly 2-absorbing submodule of M_{1};
(b) For each $a_{1}, a_{2} \in R$ and $m \in M_{1}$ such that $a_{1} R a_{2} R m=0$ if $a_{1} a_{2} \notin$ $\left(N_{1}: M_{1}\right)$ and $a_{1} m \notin N_{1}$ and $a_{2} m \notin N_{1}$ then $a_{1} R a_{2} M_{2}=0$.

Proof. (1) \Rightarrow (2).
(a) Suppose $N_{1} \times M_{2}$ is a weakly 2-absorbing submodule of $M_{1} \times M_{2}$. Let $a_{1}, a_{2} \in R$ and $m \in M_{1}$ such that $0 \neq a_{1} R a_{2} R m \subseteq N_{1}$. Now $(0,0) \neq\left(a_{1}, 0\right)(R \times$ $R)\left(a_{2}, 0\right)(R \times R)(m, 0) \subseteq N_{1} \times M_{2}$. Hence $N_{1} \times M_{2}$ a weakly 2-absorbing submodule of $M_{1} \times M_{2}$ gives $\left(a_{1} a_{2}, 0\right)=\left(a_{1}, 0\right)\left(a_{2}, 0\right) \in\left(N_{1} \times M_{2}: M_{1} \times M_{2}\right)$ or $\left(a_{1}, 0\right)(m, 0) \in N_{1} \times M_{2}$ or $\left(a_{2}, 0\right)(m, 0) \in N_{1} \times M_{2}$. Consequently $a_{1} a_{2} \in$ $\left(N_{1}: M_{1}\right)$ or $a_{1} m \in N_{1}$ or $a_{2} m \in N_{1}$. Hence N_{1} is a weakly 2 -absorbing submodule of M_{1}
(b) Let $a_{1} R a_{2} R m=0$ with $a_{1} a_{2} \notin\left(N_{1}: M_{1}\right)$ and $a_{1} m \notin N_{1}$ and $a_{2} m \notin N_{1}$ for $a_{1}, a_{2} \in R$ and $m \in M_{1}$. Suppose $a_{1} R a_{2} M_{2} \neq 0$. Hence there exists $m_{2} \in M_{2}$ such that $a_{1} R a_{2} m_{2} \neq 0$ and therefore $(0,0) \neq a_{1} R a_{2}\left(m, m_{2}\right) \subseteq a_{1} R a_{2} R m \times$ $a_{1} R a_{2} R m_{2}=\left(a_{1}, 1\right)(R \times R)\left(a_{2}, 1\right)(R \times R)\left(m, m_{2}\right) \subseteq N_{1} \times M_{2}$. Since $N_{1} \times M_{2}$ is a weakly 2 -absorbing submodule of $M_{1} \times M_{2}$ we have $\left(a_{1}, 1\right)\left(a_{2}, 1\right) \in\left(N_{1} \times\right.$ $\left.M_{2}: M_{1} \times M_{2}\right)$ or $\left(a_{1}, 1\right)\left(m, m_{2}\right) \in N_{1} \times M_{2}$ or $\left(a_{2}, 1\right)\left(m, m_{2}\right) \in N_{1} \times M_{2}$. Hence $a_{1} a_{2} \in\left(N_{1}: M_{1}\right)$ or $a_{1} m \in N_{1}$ or $a_{2} m \in N_{1}$ a contradiction. Hence $a_{1} R a_{2} M_{2}=0$.
$(2) \Rightarrow(1)$.
Let $a_{1}, a_{2} \in R$ and $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$ such that $(0,0) \neq\left(a_{1}, a_{1}\right)(R \times$ $R)\left(a_{2}, a_{2}\right)(R \times R)\left(m_{1}, m_{2}\right) \subseteq N_{1} \times M_{2}$. If $0 \neq a_{1} R a_{2} R m_{1}$ then $0 \neq$ $a_{1} R a_{2} R m_{1} \subseteq N_{1}$ and N_{1} a weakly 2 -absorbing submodule of M_{1} gives $a_{1} a_{2} \in$ $\left(N_{1}: M_{1}\right)$ or $a_{1} m_{1} \in N_{1}$ or $a_{2} m_{2} \in N_{1}$. Hence $\left(a_{1}, a_{1}\right)\left(a_{2}, a_{2}\right) \in\left(N_{1} \times M_{2}\right.$: $\left.M_{1} \times M_{2}\right)$ or $\left(a_{1}, a_{1}\right)\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$ or $\left(a_{2}, a_{2}\right)\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$. Thus $N_{1} \times M_{2}$ is a weakly 2 -absorbing submodule of $M_{1} \times M_{2}$. If $a_{1} R a_{2} R m_{1}=0$, then $a_{1} R a_{2} R m_{2} \neq 0$ and therefore $a_{1} R a_{2} M_{2} \neq 0$. By b. $a_{1} a_{2} \in\left(N_{1}: M_{1}\right)$ or $a_{1} m_{1} \in N_{1}$ or $a_{2} m_{2} \in N_{1}$. Thus $\left(a_{1}, a_{1}\right)\left(a_{2}, a_{2}\right) \in\left(N_{1} \times M_{2}: M_{1} \times M_{2}\right)$ or $\left(a_{1}, a_{1}\right)\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$ or $\left(a_{2}, a_{2}\right)\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$. Hence $N_{1} \times M_{2}$ is a weakly 2 -absorbing submodule of $M_{1} \times M_{2}$.

Proposition 5.8. Let N_{i} be a submodule of an R_{i}-module M_{i}, for $i=1,2,3$. If N is a weakly 2-absorbing submodule of $M_{1} \times M_{2} \times M_{3}$, then $N=\{(0,0,0)\}$ or N is a 2-absorbing submodule of $M_{1} \times M_{2} \times M_{3}$.
Proof. Suppose that N is a weakly 2-absorbing submodule of $M_{1} \times M_{2} \times M_{3}$ that is not 2-absorbing. We will show that $N=\{(0,0,0)\}$. Now suppose that $N_{1} \times N_{2} \times N_{3} \neq\{0\} \times\{0\} \times\{0\}$. Thus $N_{i} \neq\{0\}$, for some $i=1,2,3$. We claim that $N_{1} \neq\{0\}$. There exists $m_{1} \in N_{1}$ such that $m_{1} \neq 0$. To show that $N_{2}=M_{2}$ or $N_{3}=M_{3}$. Assume that $N_{2} \neq M_{2}$ and $N_{3} \neq M_{3}$. Thus there exist $m_{2} \in M_{2}$ and $m_{3} \in M_{3}$ such that $m_{2} \notin N_{2}$ and $m_{3} \notin N_{3}$. Since $(1,0,1)(1,1,0)\left(m_{1}, m_{2}, m_{3}\right)=$ $\left(m_{1}, 0,0\right) \neq(0,0,0)$, we have $(0,0,0) \neq(1,0,1)\left(R_{1} \times R_{2} \times R_{3}\right)(1,1,0)\left(R_{1} \times R_{2} \times\right.$ $\left.R_{3}\right)\left(m_{1}, m_{2}, m_{3}\right) \subseteq N_{1} \times N_{2} \times N_{3}$. Now, because $N_{1} \times N_{2} \times N_{3}$ is a weakly 2-absorbing submodule of $M_{1} \times M_{2} \times M_{3}$, we have $(1,0,1)(1,1,0) \in\left(N_{1} \times N_{2} \times N_{3}: M_{1} \times M_{2} \times M_{3}\right)$ or $(1,0,1)\left(m_{1}, m_{2}, m_{3}\right) \in N_{1} \times N_{2} \times N_{3}$ or $(1,1,0)\left(m_{1}, m_{2}, m_{3}\right) \in N_{1} \times N_{2} \times N_{3}$. Hence $m_{2} \in N_{2}$ or $m_{3} \in N_{3}$ a contradiction. Therefore $N=N_{1} \times M_{2} \times N_{3}$ or $N=$ $N_{1} \times N_{2} \times M_{3}$. If $N=N_{1} \times M_{2} \times N_{3}$, then $(0,1,0) \in\left(N_{1} \times M_{2} \times N_{3}: M_{1} \times M_{2} \times M_{3}\right)$. By Proposition 3.11, $\{0\} \times M_{2} \times\{0\}=(0,1,0)^{2} N \subseteq\left(N: N_{1} \times M_{2} \times N_{3}\right)=\{(0,0,0)\}$, which is a contradiction. Hence $N=\{(0,0,0)\}$.

References

[1] A. E. Ashour and M. Hamoda, Weakly primary submodules over non-commutative rings, J. Progr. Res. Math., 7 (2016), 917-927.
[2] S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamkang J. Math., 38(2007), 247-252.
[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75(2007), 417-429.
[4] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39(2013), 441-452.
[5] M. Behboodi, On the prime radical and Baer's lower nilradical of modules, Acta Math. Hungar., 122(2009), 293-306.
[6] A. Y. Darani and F. Soheilnia, U. Tekir, and G. Ulucak, On weakly 2-absorbing primary submodules of modules over commutative rings, J. Korean Math. Soc., 54(5)(2017), 1505-1519.
[7] A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math., 9(2011), 577-584.
[8] J. Dauns, Prime modules, J. Reine Angew. Math., 298(1978), 156-181.
[9] N. J. Groenewald, On 2-absorbing ideals of non-commutative rings, JP J. Algebra Number Theory Appl., 40(5)(2018), 855-867.
[10] N. J. Groenewald, On weakly and strongly 2-absorbing ideals of non-commutative rings, submitted.
[11] N. J. Groenewald and B. T. Nguyen, On 2-absorbing modules over noncommutative rings, Int. Electron. J. Algebra, 25(2019), 212-223.
[12] A. A. Tuganbaev, Multiplication modules over noncommutative rings, Sb. Math., 194(12)(2003), 1837-1864.

