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Abstract. Most of the research on weakly prime and weakly 2-absorbing modules is for

modules over commutative rings. Only scatterd results about these notions with regard

to non-commutative rings are available. The motivation of this paper is to show that

many results for the commutative case also hold in the non-commutative case. Let R be

a non-commutative ring with identity. We define the notions of a weakly prime and a

weakly 2-absorbing submodules of R and show that in the case that R commutative, the

definition of a weakly 2-absorbing submodule coincides with the original definition of A.

Darani and F. Soheilnia. We give an example to show that in general these two notions

are different. The notion of a weakly m-system is introduced and the weakly prime radical

is characterized interms of weakly m-systems. Many properties of weakly prime submod-

ules and weakly 2-absorbing submodules are proved which are similar to the results for

commutative rings. Amongst these results we show that for a proper submodule Ni of an

Ri-module Mi, for i = 1, 2, if N1 × N2 is a weakly 2-absorbing submodule of M1 × M2,

then Ni is a weakly 2-absorbing submodule of Mi for i = 1, 2

1. Introduction

In 2007 Badawi [3] introduced the concept of 2-absorbing ideals of commuta-
tive rings with identity, which is a generalization of prime ideals, and investigated
some properties. He defined a 2-absorbing ideal P of a commutative ring R with
identity to be a proper ideal of R such that if a, b, c ∈ R and abc ∈ P , then ab ∈ P
or bc ∈ P or ac ∈ P . In 2011, Darani and Soheilnia [7] introduced the concepts
of 2-absorbing and weakly 2-absorbing submodules of modules over commutative
rings with identities. A proper submodule P of a module M over a commutative
ring R with identity is said to be a 2-absorbing submodule (weakly 2-absorbing
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submodule) of M if whenever a, b ∈ R and m ∈ M with abm ∈ P (0 6= abm ∈ P ),
then abM ⊆ P or am ∈ P or bm ∈ P . One can see that 2-absorbing and weakly
2-absorbing submodules are generalizations of prime submodules. Moreover, it is
obvious that 2-absorbing ideals are special cases of 2-absorbing submodules.

Throughout this paper, all rings are associative with identity elements (not
necessarily commutative) and modules are unitary left modules. Let R be a ring
and M be an R-module. We write N ≤M , if N is a submodule of M . In recent years
the study of the absorbing properties of rings and modules, and related notions, have
been topics of interest in ring and module theory. In [11] the notion of 2-absorbing
modules over non-commutative rings was introduced. In this paper we study the
notion of weakly prime and weakly 2-absorbing modules over non-commutative
rings. We prove basic properties of weakly 2-absorbing submodules. In particular,
we show that If R is a commutative ring then the notion of a weakly 2-absorbing
submodule coincides with that of the original definition introduced by Darani and
Soheilnia in [7]. For an R-module M and a submodule N of M we have (N :R
M) = {r ∈ R : rM ⊆ N}.

Following [9] a proper ideal P of the ring R is 2-absorbing if aRbRc ⊆ P implies
ab ∈ P or ac ∈ P or bc ∈ P for a, b and c elements of R. Following [11] a proper
submodule N of the R-module M is a 2-absorbing submodule of M if aRbRx ⊆ N
implies ab ∈ (N :R M) or ax ∈ N or bx ∈ N for a, b ∈ R and x ∈ M. From [8] a
proper submodule P of M is called a prime submodule of M if, for every ideal A of
R and every submodule N of M , AN ⊆ P implies either N ⊆ P or AM ⊆ P . This
is equivalent to aRx ⊆ P implies a ∈ (P : M) or x ∈ P for a ∈ R and x ∈M. It is
clear that a submodule N of an R-module M is prime if and only P = (N :R M) is
a prime ideal of R.

From [10] A proper ideal P of the ring R is weakly prime if 0 6= aRb ⊆ P implies
a ∈ P or b ∈ P for a and b elements of R.

Definition 1.1.([1, Definition 3.3]) Let M be a left R-module. A proper submodule
N of M is called a weakly prime submodule of M if whenever r ∈ R and m ∈ M
with 0 6= rRm ⊆ N then either m ∈ N or r ∈ (N :R M).

Remark 1.2. Let p and q be two prime numbers. In the Z-module Zpq, the
submodule (0) is weakly prime, but not prime.

Compare the next Theorem with [2, Corollary 2.3].

Theorem 1.3. Let R be a ring, and M an R-module and N a weakly prime
submodule of M . If N is not a prime submodule of M , then for any subset P of R
such that P ⊆ (N :R M) we have PN = 0. In particular (N :R M)N = 0.

Proof. Suppose P is a subset of R such that P ⊆ (N :R M). Suppose PN 6= 0. We
show that N is prime. Let r ∈ R and m ∈M be such that rRm ⊆ N. If rRm 6= 0,
then r ∈ (N :R M) or m ∈ N since N is weakly prime. So assume rRm = 0. First
assume rN 6= 0, say rn 6= 0 for some n ∈ N. Now 0 6= rn ∈ rR(n + m) ⊆ N and
N weakly prime, gives r ∈ (N :R M) or (n + m) ∈ N. Hence r ∈ (N :R M) or
m ∈ N since n ∈ N. So we can assume that rN = 0. Now suppose that Pm 6= 0,
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say sm 6= 0 for s ∈ P ⊆ (N :R M). We have 0 6= sm ∈ (r + s)Rm ⊆ N. Hence
(r + s) ∈ (N :R M) or m ∈ N. So r ∈ (N :R M) or m ∈ N. Hence we can assume
that Pm = 0. Since PN 6= 0, there exists t ∈ P and n ∈ N such that tn 6= 0. Now
we have 0 6= tn ∈ (r + t)R(n + m) ⊆ N. Again, since N is weakly prime, we get
(r + t) ∈ (N :R M) or (m + n) ∈ N. Hence r ∈ (N :R M) or m ∈ N. Thus N is a
prime submodule. 2

Compare (1) ⇔ (2) of the next Theorem with [2, Theorem 2.4]

Theorem 1.4. Let N be a proper submodule of a left R-module M . Then the
following are equivalent:

(1) N is a weakly prime submodule of M .

(2) For a left ideal P of R and submodule D of M with 0 6= PD ⊆ N , either
P ⊆ (N :R M) or D ⊆ N.

(3) For any element a ∈ R and L ≤ M , if 0 6= aRL ⊆ N , then L ⊆ N or a ∈
(N :R M).

(4) For any right ideal I of R and L ≤ M , if 0 6= IL ⊆ N , then L ⊆ N or
I ⊆ (N :R M).

(5) For any element a ∈ R and L ≤ M , if 0 6= RaRL ⊆ N , then L ⊆ N or a ∈
(N :R M).

(6) For any element a ∈ R and L ≤ M , if 0 6= RaL ⊆ N then L ⊆ N or a ∈
(N :R M).

Proof.

(1) ⇒ (2) Suppose that N is a weakly prime submodule of M . If N is prime,
then the result is clear from [5, Proposition 1.1]. So we can assume that N is
weakly prime that is not prime. Let 0 6= PD ⊆ N with x ∈ D−N. We show
that P ⊆ (N :R M). Let r ∈ P . Now rRx ⊆ rD ⊆ N. If 0 6= rRx, then N
weakly prime gives r ∈ (N :R M). So assume that rRx = 0. First suppose
that rD 6= 0, say rd 6= 0 where d ∈ D. If d /∈ N , then since 0 6= rRd ⊆ N
and N weakly prime r ∈ (N :R M). If d ∈ N , then rR(d + x) = rRd ⊆ N ,
so r ∈ (N :R M) or (d + x) ∈ N . Thus, r ∈ (N :R M); hence P ⊆ (N :R M).
So we can assume that rD = 0. Suppose that Px 6= 0, say ax 6= 0 where
a ∈ P . Now 0 6= aRx ⊆ N and N weakly prime gives a ∈ (N :R M).
As (r + a)Rx = aRx ⊆ N , we get r ∈ (N :R M), so P ⊆ (N :R M).
Therefore, we can assume that Px = 0. Since PD 6= 0, there exist b ∈ P
and d1 ∈ D such that bd1 6= 0. As (N :R M)N = 0 (by Theorem 1.3) and
0 6= b(d1 +x) = bd1 ∈ N we can divide the proof into the following two cases:

Case 1. b ∈ (N :R M) and (d1+x) /∈ N . Since 0 6= (r+b)R(d1+x) = bRd1 ⊆
N , we obtain (r + b) ∈ (N :R M), so r ∈ (N :R M). Hence P ⊆ (N :R M).

Case 2. b /∈ (N :R M) and (d1 +x) ∈ N . As 0 6= bRd1 ⊆ N we have d1 ∈ N ,
so x ∈ N which is a contradiction. Thus P ⊆ (N :R M).
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(2) ⇒ (1) Suppose that 0 6= sRm ⊆ N where s ∈ R and m ∈ M . Take I = Rs
and D = Rm. Then 0 6= ID ⊆ N , so either I ⊆ (N :R M) or D ⊆ N ; hence
either r ∈ (N :R M) or m ∈ N . Thus N is weakly prime.

(2) ⇒ (3) Let a ∈ R and L ≤ M such that 0 6= aRL ⊆ N. Now 0 6= RaL ⊆ N
and from 2. L ⊆ N or a ∈ Ra ⊆ (N :R M).

(3) ⇒ (2) Let P be a left ideal of R and D a submodule of M with 0 6= PD ⊆ N.
If D ⊆ N, then we are done. So suppose D * N. We will show that P ⊆
(N :R M). Let a ∈ P. Hence aRD ⊆ N. If aRD 6= 0 then it follows from
(3) that a ∈ (N :R M) and we have P ⊆ (N :R M). So suppose aRD = 0.
Because PD 6= 0, there exists p ∈ P such that pRD 6= 0. We now have
0 6= pRD = (a+ p)RD ⊆ N. It follows from (3) that (a+ p) ∈ (N :R M) and
we have P ⊆ (N :R M).

(3) ⇔ (4) ⇔ (5) ⇔ (6) is now easy to see. 2

Remark 1.5. From [5] we know that if N is a prime submodule of an R-module
M , then (N :R M) is a prime ideal of R. Suppose that N is weakly prime which is
not prime. Contrary to what happens for a prime submodules, the ideal (N :R M)
is not, in general, a weakly prime ideal of R. For example, let M denote the cyclic
Z-module Z/8Z. Take N = {0}. Certainly N is a weakly prime submodule of M ,
but (N :R M) = 8Z is not a weakly prime ideal of R, but we have the following
result:

Proposition 1.6. Let R be a ring with identity M a faithful R-module, and N a
weakly prime submodule of M . Then (N :R M) is a weakly prime ideal of R.

Proof. Assume that M is a faithful R module and let 0 6= aRb ⊆ (N :R M).
Since M is a faithful R module we have 0 6= aRbM ⊆ N. It follows that 0 6=
(RaR)(RbR)M ⊆ N . From Theorem 1.4 we have (RaR)M ⊆ N or(RbR)M ⊆ N.
Hence a ∈ (N :R M) or b ∈ (N :R M) and it follows that (N :R M) is a weakly
prime ideal. 2

From [12] we have that M is a multiplication module over a non-commutative
ring if and only if (N : M)M = N for each submodule N of M.

Proposition 1.7. Let M be a multiplication R-module. If (N : M) is a weakly
prime ideal of R, then N is a weakly prime submodule of M .

Proof. Let 0 6= aRm ⊆ N with m ∈M and a /∈ (N : M). Since M is a multiplication
module there is an ideal I of R such that Rm = IM , then 0 6= RaIM ⊆ N .
Hence 0 6= RaI ⊆ (N : M). Since (N : M) is a weakly prime ideal of R, we have
Ra ⊆ (N : M) or I ⊆ (N : M). Since a /∈ (N : M), we have I ⊆ (N : M). Hence
Rm = IM ⊆ N . Thus m ∈ N and N is a weakly prime submodule of M. 2

Remark 1.8. The converse of Proposition 1.7 is not true in general. Suppose that
M = Z × Z is an R = Z × Z−module and N = 2Z × {0} is a submodule of M
.(N : M) = 0 is a weakly prime ideal. We have (0, 0) 6= (2, 0)(1, 1) ∈ 2Z×{0}. Now,
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neither (2, 0) ∈ (N : M) nor (1, 1) ∈ N. Hence N is not weakly prime. Notice that
M is not a multiplication module.

Lemma 1.9. Let R be a ring, M an R-module and N a weakly prime submodule of
M . If 0 6= aRbRm ⊆ N and am /∈ N , then bM ⊆ N for all a; b ∈ R and m ∈M .

Proof. Let a, b ∈ R and m ∈ M . Assume that 0 6= aRbRm ⊆ N and am /∈ N.
Now we have 0 6= (RaR)(RbR)m ⊆ N . From Theorem 1.4 we have RaRM ⊆ N or
RbRm ⊆ N. Since am /∈ N we have RbRm ⊆ N . Because 0 6= aRbRm we must
have 0 6= bRm ⊆ N . Now, since N is weakly prime we get bM ⊆ N or m ∈ N.
Since am /∈ N,we must have bM ⊆ N and we are done. 2

The following result gives characterizations of weakly prime submodules.

Theorem 1.10. Let M be an R-module. The following asserations are equivalent:

(1) P is a weakly prime submodule of M .

(2) (P : Rx) = (P : M) ∪ (0 : Rx) for any x ∈M − P .

(3) (P : Rx) = (P : M) or (P : Rx) = (0 : Rx) for any x ∈M − P .

Proof. (1) ⇒ (2) Let r ∈ (P : Rx) and x /∈ P . Then rRx ⊆ P . Suppose rRx 6= 0.
Hence r ∈ (P : M) because P is weakly prime and x /∈ P . If rRx = 0, then
r ∈ (0 : Rx). Thus (P : Rx) ⊆ (P : M) ∪ (0 : Rx). Now if r ∈ (P : M) ∪ (0 : Rx)
then either r ∈ (P : M) or r ∈ (0 : Rx). Hence, when r ∈ (0 : Rx), rRx = 0 ⊆ P
and so r ∈ (P : Rx). If r ∈ (P : M) then rM ⊆ P , and this implies rRx ⊆ rM ⊆ P.
Hence r ∈ (P : Rx) and therefore (P : Rx) = (P : M) ∪ (0 : Rx). (2) ⇒ (3) Is
obvious. (3) ⇒ (1) Suppose that 0 6= rRx ⊆ P with r ∈ R and x ∈ M − P . Then
r ∈ (P : Rx) and r /∈ (0 : Rx). It follows from (3) that r ∈ (P : Rx) = (P : M), as
required. 2

Proposition 1.11. Let M1 and M2 be unitary R-modules over a ring R. Let
M = M1 ⊕M2 and N ⊆M1 ⊕M2. Then the following are satisfied:

(1) N = Q⊕M2 is a weakly prime submodule of M if and only if Q is a weakly
prime submodule of M1 and r ∈ R, x ∈ M1 with rRx = 0, but x /∈ Q,
r /∈ (Q : M1) implies rM2 = 0.

(2) N = M1 ⊕Q is a weakly prime submodule of M if and only if Q is a weakly
prime submodule of M2 and r ∈ R, x ∈ M2 with rRx = 0, but x /∈ Q,
r /∈ (Q : M2) implies rM1 = 0.

Proof. We will prove (1) and the proof of (2) will be similar. (⇒) Let N = Q⊕M2

be a weakly prime submodule of M. Let 0 6= rRq ⊆ Q , q /∈ Q . Then (q, 0) /∈ Q⊕M2

, while 0 6= rR(q, 0) ⊆ Q ⊕M2. Since N = Q ⊕M2 is a weakly prime submodule
of M we have r ∈ (M1 ⊕M2 : Q⊕M2). Hence rM1 ⊆ Q and Q is a weakly prime
submodule of M1. Now, suppose r ∈ R, x ∈ M1 such that rRx = 0, but x /∈ Q,
r /∈ (Q : M1). Assume that rM2 6= 0, so there esists m ∈ M2 such that rm 6= 0.
Thus (0, 0) 6= rR(x,m) = (rRx, rRm) = (0, rRm) ⊆ Q ⊕M2 = N. N is a weakly
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prime submodule of M, so either (x,m) ∈ Q ⊕M2 or r ∈ (Q ⊕M2 : M1 ⊕M2).
Thus either x ∈ Q or r ∈ (Q : M1) which is a contradiction with hypothesis, hence
rM2 = 0. (⇐) Let r ∈ R and (x, y) ∈ M. Assume (0, 0) 6= rR(x, y) ⊆ Q ⊕M2,
so if rRx 6= 0, then x ∈ Q or r ∈ (Q : M1), since Q is a weakly prime submodule
of M1. Thus either (x, y) ∈ Q ⊕M2 = N or r ∈ (N : M). If rRx = 0, suppose
x /∈ Q, r /∈ (Q,M1). Then by hypothesis rM2 = 0 and so rRy ⊆ rM2 = 0. Hence
rR(x, y) = (0, 0) which is a contradiction. Thus either x ∈ Q or r ∈ (Q : M1) and
hence either (x, y) ∈ Q⊕M2 = N or r ∈ (Q⊕M2 : M1 ⊕M2). 2

Remark 1.12. Let M1 and M2 be R-modules. If (0) is a prime submodule of M1,
then (0)⊕M2 is a weakly prime submodule of M1 ⊕M2.

Proof. Let r ∈ R and (x, y) ∈M. If (0, 0) 6= rR(x, y) ⊆ (0)⊕M2, then rRx = 0 and
rRy ⊆ M2. Since (0) is a prime submodule of M1, either x = 0 or r ∈ ((0) : M1).
Hence either (x, y) = (0, y) ∈ (0)⊕M2 or r ∈ ((0)⊕M2 : M1⊕M2), that is (0)⊕M2

is a weakly prime submodule of M1 ⊕M2. 2

Proposition 1.13. Let M1 and M2 be R-modules. If U ⊕W is a weakly prime
submodule of M1⊕M2, then U and W are weakly prime submodules of M1 and M2

respectively.

Proof. The proof is straight forward so it is omitted. 2

Remark 1.14. The converse of Proposition 1.13 is not true in general as the
following example shows.

Example 1.15. Suppose M = Z ⊕ Z is a Z-module and consider the submodule
N = pZ ⊕ {0} of M. pZ is a prime submodule of the Z-module Z and hence also
a weakly prime submodule and {0} is a weakly prime submodule of the Z module
Z. N = pZ ⊕ {0} is not weakly prime since (0, 0) 6= p(1, 0) ∈ pZ ⊕ {0} but
p /∈ (pZ⊕ {0} :Z Z⊕ Z) and (1, 0) /∈ pZ⊕ {0}.

2. The Weakly Prime Radical

We begin this section with the definition of weakly m-systems.

Definition 2.1 Let R be a ring and M be an R-module. A nonempty set S ⊆
M\{0} is called a weakly m-system if, for each ideal A of R, and for all submodules
K,L ⊆M , if (K+L)∩S 6= ∅, (K+AM)∩S 6= ∅, and AL 6= 0 then (K+AL)∩S 6= ∅.

Proposition 2.2. Let M be an R-module. Then a submodule P of M is weakly
prime if and only if M\P is a weakly m-system.

Proof. Suppose S = M\P . Let A be an ideal in R and K and L be submodules of
M such that (K +L)∩S 6= ∅, (K +AM)∩S 6= ∅ and AL 6= 0. If (K +AL)∩S = ∅
then K+AL ⊆ P . Hence AL ⊆ P and since P is weakly prime, and AL 6= 0, L ⊆ P
or AM ⊆ P . It follows that (K +L)∩S = ∅ or (K +AM)∩S = ∅, a contradiction.
Therefore, S is a weakly m-system in M . Conversely, let S = M\P be a weakly
m-system in M . Suppose AL ⊆ P and AL 6= 0, where A is an ideal of R and L is
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a submodule M . If L * P and AM * P , then L ∩ S 6= ∅ and AM ∩ S 6= ∅. Thus,
AL ∩ S 6= ∅, a contradiction. Therefore, P is a weakly prime submodule of M . 2

The following proposition offers several characterizations of a weakly m-system
S when it is the complement of a submodule.

Proposition 2.3. Let R be a ring and M be an R-module. Let P be a proper
submodule of M , and let S := M\P . Then the following statements are equivalent:

(1) P is weakly prime;

(2) S is a weakly m-system;

(3) for each left ideal A ⊆ R, and for every submodule L 5 M , if L ∩ S 6= ∅,
AM ∩ S 6= ∅ and AL 6= 0 then AL ∩ S 6= ∅;

(4) for each ideal A ⊆ R, and for every m ∈M , if Rm∩S 6= ∅, AM ∩S = ∅ and
AL 6= 0, then ARm ∩ S 6= ∅;

(5) for each a ∈ R, and for each m ∈ M , if Rm ∩ S 6= ∅, aM ∩ S 6= ∅ and
aRm 6= 0, then aRm ∩ S 6= ∅.

Proof. (1) ⇔ (2) follows from Proposition 2.2. (2) ⇒ (3) ⇒ (4) ⇒ (5) is clear (5)
⇒ (1). Suppose a ∈ R and m ∈ M with 0 6= aRm ⊆ P. If Rm * P and aM * P,
then Rm ∩ S 6= ∅ and aM ∩ S 6= ∅ and aRm 6= 0. From (5) aRm ∩ S 6= ∅. Hence
aRm * P a contradiction. Hence Rm ⊆ P or aM ⊆ P and P is weakly prime. 2

Proposition 2.4. Let M be an R-module, S ⊆M be a weakly m-system, and let P
be a submodule of M maximal with respect to the property that P is disjoint from
S. Then P is a weakly prime submodule.

Proof. Suppose 0 6= AL ⊆ P , where A is an ideal of R and L 5 M . If L * P
and AM * P , then by the maximal property of P , we have, (P + L) ∩ S 6= ∅
and (P + AM) ∩ S 6= ∅. Thus, since S is a weakly m-system (P + AL) ∩ S 6= ∅
and it follows that P ∩ S 6= ∅, a contradiction. Thus, P must be a weakly prime
submodule. 2

Next we need a generalization of the notion of
√
N for any submodule N of M .

We adopt the following:

Definition 2.5. Let R be a ring and M be an R-module. For a submodule N of M ,
if there is a weakly prime submodule containing N , then we define

√
N := {m ∈M

: every weakly m-system containing m meets N}. If there is no weakly prime
submodule containing N , then we put

√
N = M.

Theorem 2.6. Let M be an R-module and N ≤M . Then either
√
N = M or

√
N

equals the intersection of all the weakly prime submodules of M containing N .

Proof. Suppose that
√
N 6= M . This means that {P |P is a weakly prime submodule

of M and N ⊆ P} 6= ∅. We first prove that
√
N ⊆ {P |P is a weakly prime

submodule of M and N ⊆ P}. Let m ∈
√
N and P be any weakly prime submodule
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of M containing N . Consider the m-system M\P . This m-system cannot contain m,
for otherwise it meets N and hence also P . Therefore, we have m ∈ P . Conversely,
assume m /∈

√
N . Then, by Definition 2.5, there exists an m-system S containing

m which is disjoint from N . By Zorn’s Lemma, there exists a submodule P ⊇ N
which is maximal with respect to being disjoint from S. By Proposition 2.4, P is a
weakly prime submodule of M , and we have m /∈ P , as desired. 2

3. Weakly 2-absorbing Submodules

From [11] we have the following:

Definition 3.1. Let P be a proper ideal of a ring R. Then P is a 2-absorbing ideal
of R if aRbR ⊆ P implies ab ∈ P or bc ∈ P or ac ∈ P for all a; b; c ∈ R.

Definition 3.2. Let R be a ring and N be a proper submodule of an R-module
M . Then N is 2-absorbing submodule of M if aRbRm ⊆ N implies abM ⊆ N i.e.
ab ∈ (N :R M) or am ∈ N or bm ∈ N for all a; b ∈ R and m ∈M .

Remark 3.3. If R is a commutative ring then this notion of a 2-absorbing sub-
module coincides with that of Darani and Soheilnia [7].

We now have the following:

Definition 3.4. Let R be a ring and N be a proper submodule of an R-module
M . Then N is a weakly 2-absorbing submodule of M if 0 6= aRbRm ⊆ N implies
abM ⊆ N i.e. ab ∈ (N :R M) or am ∈ N or bm ∈ N for all a; b ∈ R and m ∈M .

Remark 3.5. Every 2-absorbing submodule is weakly 2-absorbing but the converse
does not necessarily hold. For example consider the case where R = Z, M = Z/30Z
and N = 0. Then 2.3.(5 + 30Z) = 0 ∈ N while 2.3 /∈ (N :R M), 2.(5 + 30Z) /∈ N
and 3.(5+30Z) /∈ N . Therefore N is not 2-absorbing while it is weakly 2-absorbing.

Proposition 3.6. Let x ∈ M and a ∈ R. Then if annl(x) ⊆ (Rx : M), the
submodule Rx is 2-absorbing if and only if Rx is weakly 2- absorbing.

Proof. Let Rx be a weakly 2-absorbing submodule of M and suppose r, s ∈ R and
m ∈M with rRsRm ⊆ Rx. Since Rx is a weakly 2-absorbing submodule, we may
assume rRsRm = 0, otherwise Rx is 2-absorbing. Now rRsR(x + m) ⊆ Rx. If
rRsR(x+m) 6= 0 then we have rs ∈ (Rx : M) or r(x+m) ∈ Rx or s(x+m) ∈ Rx,
as Rx is a weakly 2-absorbing submodule. Hence rs ∈ (Rx : M) or rm ∈ Rx or
sm ∈ Rx. Now let rRsR(x+m) = 0. Then rRsRm = 0 implies rRsRx = 0. Hence
rs ∈ann l(x) ⊆ (Rx : M). Thus Rx is 2-absorbing. 2

Proposition 3.7. Let R be a ring and N be a proper submodule of an R-module
M . If N is weakly prime, then it is weakly 2-absorbing.

Proof. Assume N is a weakly prime submodule of the R-module M and 0 6=
aRbRm ⊆ N for all a; b ∈ R and m ∈ M . Suppose am /∈ N. It now follows from
Proposition 1.9 that bM ⊆ N and consequently abM ⊆ N . Hence N is weakly
2-absorbing. 2
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Compare the following theorem with that of [7, Theorem 2.3(ii)].

Theorem 3.8. The intersection of each pair of weakly prime submodules of an
R-module M is a weakly 2-absorbing submodule of M .

Proof. Let N and K be two weakly prime submodules of M . If N = K, then
N ∩K is a weakly prime submodule of M so that N ∩K is a weakly 2-absorbing
submodule of M . Assume that N and K are distinct. Since N and K are proper
submodules of M , it follows that N ∩ K is a proper submodule of M . Next, let
a, b ∈ R and m ∈ M be such that 0 6= aRbRm ⊆ N ∩ K but am /∈ N ∩ K and
ab /∈ (N ∩K : M). Then, we can conclude that (a) am /∈ N or am /∈ K, and (b)
ab /∈ (N :R M) or ab /∈ (K :R M). These two conditions give 4 cases:

(1) am /∈ N and ab /∈ (N :R M);

(2) am /∈ N and ab /∈ (K :R M);

(3) am /∈ K and ab /∈ (N :R M);

(4) am /∈ K and ab /∈ (K :R M).

We first consider Case(1). Since 0 6= aRbRm ⊆ N ∩ K ⊆ N and am /∈ N ,
it follows from Proposition 1.9 that bM ⊆ N . This is a contradiction because
ab /∈ (N :R M). Hence Case(1) does not occur. Similarly, Case(4) is not possible.
Next, Case(2) is considered. Again, we obtain that bM ⊆ N and then bm ∈ N .
Since 0 6= aRbRm ⊆ K it follows that 0 6= (RaR)(RbR)m) ⊆ K. Hence, from the
fact that K is weakly prime and from Theorem 1.4 it follows that aM ⊆ RaRM ⊆ K
or bm ∈ RbRm ⊆ K If aM ⊆ K, then abM ⊆ aM ⊆ K which contradicts
ab /∈ (K :R M). Thus bm ∈ K. Hence bm ∈ N ∩K. The proof of Case(3) is similar
to that of Case(2). Hence N ∩K is a weakly 2-absorbing submodule of M . 2

Definition 3.9. Let N be a weakly 2-absorbing submodule of M . (a, b,m) is called
a triple-zero of N if aRbRm = 0, ab /∈ (N :R M), am /∈ N and bm /∈ N.

The following result is an analogue of [6, Theorem 1].

Theorem 3.10. Let N be weakly 2-absorbing submodule of M and (a, b,m) be a
triple-zero of N for some a, b ∈ R and m ∈M . Then the followings hold.

(1) aRbN = a(N :R M)m = b(N :R M)m = 0.

(2) a(N :R M)N = b(N :R M)N = (N :R M)bN = (N :R M)bm = (N :R
M)2m = 0.

Proof. Suppose that (a, b,m) is a triple-zero of N for some a, b ∈ R and m ∈M .

(1) Assume that aRbN 6= 0. Then there is an element n ∈ N such that aRbRn 6=
0. Now aRbR(m + n) = aRbRm + aRbRn = aRbRn 6= 0 since aRbRm = 0
because (a, b,m) is a triple-zero of N . Since 0 6= aRbR(m + n) ⊆ N and N
weakly 2-absorbing we have ab ∈ (N :R M) or a(m+n) ∈ N or b(m+n) ∈ N .
Since (a, b,m) is a triple-zero of N, ab /∈ (N :R M). Hence a(m + n) ∈ N
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or b(m + n) ∈ N and consequently am ∈ N or bm ∈ N a contradiction.
Hence aRbN = 0. Now, we suppose that a(N :R M)m 6= 0. Thus there
exists an element r ∈ (N :R M) such that arm 6= 0. Hence aR(r + b)rm =
aRrRm + aRbRm = aRrRm. Since 0 6= arm ∈ aRrRm ⊆ N and N weakly
2-absorbing we have a(r+ b) ∈ (N :R M) or am ∈ N or (r+ b)m ∈ N . Hence
ab ∈ (N :R M) or am ∈ N or bm ∈ N a contradiction since (a, b,m) is a
triple-zero of N . Similarly, it can be easily seen that b(N :R M)m = 0.

(2) Assume that a(N :R M)N 6= 0. Then there are r ∈ (N :R M), n ∈ N such
that arn 6= 0. By (1), we get a(b+r)(m+n) = abm+abn+arm+arn = arn 6=
0. Now 0 6= aR(b+r)R(m+n) ⊆ N . Therefore, we have a(b+r) ∈ (N :R M)
or a(m + n) ∈ N or (b + r)(m + n) ∈ N and we obtain ab ∈ (N :R M) or
am ∈ N or bm ∈ N , a contradiction. Hence a(N :R M)N = 0. In a similar
way, we get b(N :R M)N = 0. Now, we suppose that (N :R M)bN 6= 0.
Then there are r ∈ (N :R M), n ∈ N such that rbn 6= 0. Now, from
above (a + r)b(n + m) = abn + abm + rbn + rbm = rbn 6= 0. Hence 0 6=
(a+r)RbR(n+m) ⊆ N and since N is weakly 2-absorbing (a+r)b ∈ (N :R M)
or (a+ r)(n+m) ∈ N or b(n+m) ∈ N . Hence ab ∈ (N :R M) or am ∈ N or
bm ∈ N a contradiction since (a, b,m) is a triple-zero of N . Now, we suppose
that (N :R M)bm 6= 0. Then there is r ∈ (N :R M) such that rbm 6= 0. Hence
0 6= rbm = (a + r)bm ∈ (a + r)RbRm = rRbRm ⊆ N . Since N is weakly
2-absorbing, we have (a + r)b ∈ (N :R M) or (a + r)m ∈ N or bm ∈ N .
Therefore ab ∈ (N :R M) or am ∈ N or bm ∈ N a contradiction since
(a, b,m) is a triple-zero of N . Hence (N :R M)bm = 0. Lastly, we show that
(N :R M)2m = 0. Let (N :R M)2m 6= 0. Thus there exist r, s ∈ (N :R M)
where rsm 6= 0. By (1), we get (a + r)(b + s)m = rsm 6= 0. Thus we have
0 6= (a+r)R(b+s)Rm ⊆ N . Hence (a+r)(b+s) ∈ (N :R M) or (a+r)m ∈ N
or (b + s)m ∈ N .

Consequently, ab ∈ (N :R M) or am ∈ N or bm ∈ N a contradiction, since
(a, b,m) is a triple-zero of N . Therefore (N : M)2m = 0. 2

The following result is an analogue of [6, Lemma 1].

Proposition 3.11. Assume that N is a weakly 2-absorbing submodule of an R-
module M that is not 2-absorbing. Then (N :R M)2N = 0. In particular, (N :R
M)3 ⊆Ann(M).

Proof. Suppose that N is a weakly 2-absorbing submodule of an R-module M that
is not 2-absorbing. Then there is a triple-zero (a, b,m) of N for some a, b ∈ R and
m ∈ M . Assume that (N :R M)2N 6= 0. Thus there exist r, s ∈ (N :R M) and
n ∈ N with rsn 6= 0. By Theorem 3.10, we get (a + r)(b + s)(n + m) = rsn 6= 0.
Then we have 0 6= (a+ r)R(b+ s)R(n+m) ⊆ N. Since N is weakly 2-absorbing we
have (a + r)(b + s) ∈ (N :R M) or (a + r)(n + m) ∈ N or (b + s)(n + m) ∈ N and
so ab ∈ (N :R M) or am ∈ N or bm ∈ N , which is a contradiction.

Thus (N :R M)2N = 0. We get (N :R M)3 ⊆ ((N :R M)2N : M) = (0 :
M) =Ann(M). 2
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4. On a Question from Badawi and Yousefian

In [4], the authors asked the following question:

Question. Suppose that L is a weakly 2-absorbing ideal of a ring R and 0 6= IJK ⊆
L for some ideals I, J,K of R. Does it imply that IJ ⊆ L or IK ⊆ L or JK ⊆ L?

This section is devoted to studying the above question and its generalization in
modules over non-commutative rings.

Definition 4.1. Let N be a weakly 2-absorbing submodule of an R-module M and
let 0 6= I1I2K ⊆ N for some ideals I1, I2 of R and some submodule K of M. N is
called free triple-zero in regard to I1, I2,K if (a, b,m) is not a triple-zero of N for
every a ∈ I1, b ∈ I2 and m ∈ K.

The following result and its proof are analogous of [6, Lemma 2].

Lemma 4.2. Let N be a weakly 2-absorbing submodule of M . Assume that aRbK ⊆
N for some a, b ∈ R and some submodule K of M where (a, b,m) is not a triple-zero
of N for every m ∈ K. If ab /∈ (N :R M), then aK ⊆ N or bK ⊆ N .

Proof. Assume that aK * N and bK * N . Then there are x, y ∈ K such that
ax /∈ N and by /∈ N . We get bx ∈ N since N is a weakly 2-absorbing submodule,
(a, b, x) is not a triple-zero of N , ab /∈ (N :R M) and ax /∈ N . In a similar way,
ay ∈ N . Now, aRbR(x + y) ⊆ N and since (a, b, x + y) is not a triple-zero of
N and ab /∈ (N :R M) we have a(x + y) ∈ N or b(x + y) ∈ N . Assume that
a(x + y) = (ax + ay) ∈ N . As ay ∈ N , we get ax ∈ N , a contradiction. Assume
that b(x + y) = (bx + by) ∈ N . As bx ∈ N , we get by ∈ N , a contradiction again.
Hence we obtain that aK ⊆ N or bK ⊆ N . 2

Let N be a weakly 2-absorbing submodule of an R-module M and I1I2K ⊆ N
for some for some ideals I1, I2 of R and some submodule K of M where N is free
triple-zero in regard to I1, I2,K. Note that if a ∈ I1, b ∈ I2 and m ∈ K, then
ab ∈ (N :R M) or am ∈ N or bm ∈ N .

The following result and its proof are analogous of [6, Theorem 1] and its proof.

Theorem 4.3. Assume that N is a weakly 2-absorbing submodule of an R-module
M and 0 6= IJK ⊆ N for some ideals I, J of R and some submodule K of M where
N is free triple-zero in regard to I, J,K. Then IJ ⊆ (N :R M) or IK ⊆ N or
JK ⊆ N .

Proof. Let N be a weakly 2-absorbing submodule of an R-module M and 0 6=
IJK ⊆ N for some ideals I, J of R and some submodule K of M where N is free
triple-zero in regard to I, J,K. Suppose IJ * (N :R M). We show that IK ⊆ N
or JK ⊆ N . Assume IK * N and JK * N. Then a1K * N and a2K * N where
a1 ∈ I and a2 ∈ J. From Lemma 4.2 a1a2 ∈ (N :R M) since a1Ra2K ⊆ IJK ⊆ N
and a1K * N and a2K * N. By our assumption, there are b1 ∈ I and b2 ∈ J
such that b1b2 /∈ (N :R M). By Lemma 4.2, we get b1K ⊆ N or b2K ⊆ N since
b1Rb2K ⊆ IJK ⊆ N and b1b2 /∈ (N :R M). We have the following cases: Case (1)
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b1K ⊆ N and b2K * N : Since a1Rb2K ⊆ IJK ⊆ N and a1K " N and b2K * N
it follows from Lemma 4.2 that a1b2 ∈ (N :R M). Since b1K ⊆ N and a1K * N , we
conclude (a1 + b1)K * N . On the other hand since (a1 + b1)Rb2K ⊆ N and neither
(a1 + b1)K ⊆ N nor b2K ⊆ N , we get that (a1 + b1)b2 ∈ (N :R M) by Lemma 4.2.
But, because (a1 + b1)b2 = (a1b2 + b1b2) ∈ (N :R M) and (a1 + b1)b2 ∈ (N :R M),
we get b1b2 ∈ (N :R M) which is a contradiction. Case (2) b2K ⊆ N and b1K * N :
By a similar argument to case (1) we get a contradiction. Case (3) b1K ⊆ N and
b2K ⊆ N : b2K ⊆ N and a2K " N gives (a2 + b2)K " N . But a1R(a2 + b2)K ⊆ N
and neither a1K ⊆ N nor (a2 + b2)K ⊆ N , hence a1(a2 + b2) ∈ (N :R M) by
Lemma 4.2. Since a1a2 ∈ (N :R M) and (a1a2 + a1b2) ∈ (N :R M), we have a1b2 ∈
(N :R M). Since (a1 + b1)Ra2K ⊆ N and neither a2K ⊆ N nor (a1 + b1)K ⊆ N ,
we conclude (a1 + b1)a2 ∈ (N :R M) by Lemma 4.2. But (a1 + b1)a2 = a1a2 + b1a2,
so (a1a2 + b1a2) ∈ (N :R M) and since a1a2 ∈ (N :R M), we get b1a2 ∈ (N :R M).
Now, since (a1 +b1)R(a2 +b2)K ⊆ N and neither (a1 +b1)K ⊆ N nor (a2 +b2)K ⊆
N , we have (a1 + b1)(a2 + b2) = (a1a2 + a1b2 + b1a2 + b1b2) ∈ (N :R M) by Lemma
4.2. But a1a2, a1b2, b1a2 ∈ (N :R M), so b1b2 ∈ (N :R M) which is a contradiction.
Consequently IK ⊆ N or JK ⊆ N . 2

5. Weakly 2-absorbing Submodules of Product Modules

Proposition 5.1. Let R = R1×R2 and M = M1×M2 where M1 is an R1 module

and 0 6= M2 is an R2 module. If N1 is a proper submodule of M1 then the following
statements are equivalent:

(1) N1 is a 2-absorbing submodule of M1;

(2) N1 ×M2 is a 2-absorbing submodule of M1 ×M2;

(3) N1 ×M2 is a weakly 2-absorbing submodule of M1 ×M2.

Proof. (1) ⇔ (2) follows from [11, Theorem 2.5]. (2) ⇒ (3) is clear. We show
(3) ⇒ (1) Let a, b ∈ R1 and x ∈ M1 such that aR1bR1x ⊆ N1. For every 0 6=
y ∈ M2 we have (a, 1)(b, 1)(x, y) = (abx, y) 6= (0, 0). Now (0, 0) 6= (abx, y) ∈
aR1bR1x×1R11R1y ⊆ N1×M2. Since N1×M2 is a weakly 2-absorbing submodule
of M1×M2, we get (a, 1)(b, 1) ∈ (M1×M2 : N1×M2) or (a, 1)(x, y) ∈ N1×M2 or
(b, 1)(x, y) ∈ N1 ×M2. Hence ab ∈ (N1 : M1) or ax ∈ N1 or bx ∈ N1. 2

Proposition 5.2. Let R = R1 × R2 and M = M1 × M2 where 0 6= M1 is an
R1 module and M2 is an R2module. If N2 is a proper submodule of M2 then the
following statements are equivalent:

(1) N2 is a 2-absorbing submodule of M1;

(2) M1 ×N2 is a 2-absorbing submodule of M1 ×M2;

(3) M1 ×N2 is a weakly 2-absorbing submodule of M1 ×M2.
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Proof. Similar to Proposition 5.1. 2

Proposition 5.3. Let R = R1×R2 and M = M1×M2 where M1 is an R1 module
and 0 6= M2 is an R2module. Let N1 6= M1. If N1 is a weakly prime submodule of
M1 and 0 a prime submodule of M2 then N1×{0} is a weakly 2-absorbing submodule
of M1 ×M2.

Proof. Assume (0, 0) 6= (a, b)R(c, d)R(x, y) ⊆ N1 × {0} where (a, b) ∈ R, (c, d) ∈ R
and (x, y) ∈M. Hence 0 6= aR1cR1x ⊆ N1 and bR2dR2y = 0. Since N1 is a weakly
prime submodule of M1 we get a ∈ (N1 : M1) or c ∈ (N1 : M1) or x ∈ N1.
Also, since 0 is a prime submodule of M2 and bR2dR2y = 0 we have b ∈ (0 : M2) or
d ∈ (0 : M2) or y = 0. In any of the above cases we have (a, b)(c, d) ∈ (N1×{0} : M)
or (a, b)(x, y) ∈ N1 × {0} or (c, d)(x, y) ∈ N1 × {0}. 2

Proposition 5.4. Let R = R1 × R2 and M = M1 ×M2 where 0 6= M1 is an R1

module and 0 6= M2 is an R2 module. If N = N1 × N2 is a weakly 2-absorbing
submodule of M , N1 6= M1, and N2 6= M2, then N1 and N2 are weakly prime
submodules of M1 and M2 respectively.

Proof. Let 0 6= rRx ⊆ N1, where r ∈ R1 and x ∈ M1. Consider z ∈ M2\N2. Then
(0, 0) 6= (1, 0)R(r, 1)R(x, z) ⊆ N and as N is weakly 2-absorbing, (1, 0)(r, 1) ∈ (N :
M) or (r, 1)(x, z) ∈ N or (1, 0)(x, z) ∈ N. Note that since z ∈M2\N2, (r, 1)(x, z) /∈
N. Thus (1, 0)(r, 1) ∈ (N : M) = (N1 : M1) × (N2 : M2) or (1, 0)(x, z) ∈ N .
Therefore, r ∈ (N1 : M1) or x ∈ N1. This shows that N1 is a weakly prime
submodule of M1. Similarly we can show that N2 is a weakly prime submodule of
M2. 2

Proposition 5.5. Let Ni be a proper submodule of an Ri-module Mi, for i = 1, 2.
If N1 ×N2 is a weakly 2-absorbing submodule of M1 ×M2, then

(1) N1 is a weakly 2-absorbing submodule of M1,

(2) N2 is a weakly 2-absorbing submodule of M2.

Proof.

(1) Suppose that N1 ×N2 is a weakly 2-absorbing submodule of M1 ×M2. Let
a1, a2 ∈ R1 and m ∈ M1 such that 0 6= a1R1a2R1m ⊆ N1. Clearly, (0, 0) 6=
(a1, 1)(R1 × R2)(a2, 1)(R1 × R2)(m,m2) for any m2 ∈ N2. Hence (0, 0) 6=
(a1, 1)(R1 × R2)(a2, 1)(R1 × R2)(m,m2) ⊆ a1R1a2R1m × 1R21R2m2 ⊆
N1 × N2. Since N1 × N2 is a weakly 2-absorbing submodule of M1 ×M2,
(a1, 1)(a2, 1) ∈ (N1 × N2 : M1 × M2) or (a1, 1)(m,m2) ∈ N1 × N2 or
(a2, 1)(m,m2) ∈ N1 × N2. Consequently a1a2 ∈ (N1 : M1) or a1m ∈ N1

or a2m ∈ N1. Hence N1 is a weakly 2-absorbing submodule of M1.

(2) This follows as in part (1). 2

The converse of the above proposition is no true in general:
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Example 5.6. Suppose that M = Z× Z is an R = Z× Z-module and N = pZ×{0}
is a submodule of M where pZ is a prime submodule and hence a weakly 2-absorbimg
submodule of the Z module Z and {0} is weakly 2-absorbing.submodule of the Z
module Z. Then (N : M) = 0. Assume that (0, 0) 6= (p, 1)(1, 0)(1, 1) ∈ pZ × {0}.
Then neither (p, 1)(1, 0) ∈ (N : M) nor (p, 1)(1, 1) ∈ N nor (1, 0)(1, 1) ∈ N. Hence
N is not weakly 2-absorbing.

Proposition 5.7. Let Ni be a proper submodule of an R-module Mi, for i = 1, 2
Then the following conditions are equivalent:

(1) N1 ×M2 is a weakly 2-absorbing submodule of M1 ×M2;

(2) (a) N1 is a weakly 2-absorbing submodule of M1;

(b) For each a1, a2 ∈ R and m ∈ M1 such that a1Ra2Rm = 0 if a1a2 /∈
(N1 : M1) and a1m /∈ N1 and a2m /∈ N1 then a1Ra2M2 = 0.

Proof. (1) ⇒ (2).

(a) Suppose N1×M2 is a weakly 2-absorbing submodule of M1×M2. Let a1, a2 ∈ R
and m ∈ M1 such that 0 6= a1Ra2Rm ⊆ N1. Now (0, 0) 6= (a1, 0)(R ×
R)(a2, 0)(R × R)(m, 0) ⊆ N1 ×M2. Hence N1 ×M2 a weakly 2-absorbing
submodule of M1×M2 gives (a1a2, 0) = (a1, 0)(a2, 0) ∈ (N1×M2 : M1×M2)
or (a1, 0)(m, 0) ∈ N1 ×M2 or (a2, 0)(m, 0) ∈ N1 ×M2. Consequently a1a2 ∈
(N1 : M1) or a1m ∈ N1 or a2m ∈ N1. Hence N1 is a weakly 2-absorbing
submodule of M1

(b) Let a1Ra2Rm = 0 with a1a2 /∈ (N1 : M1) and a1m /∈ N1 and a2m /∈ N1 for
a1, a2 ∈ R and m ∈M1. Suppose a1Ra2M2 6= 0. Hence there exists m2 ∈M2

such that a1Ra2m2 6= 0 and therefore (0, 0) 6= a1Ra2(m,m2) ⊆ a1Ra2Rm×
a1Ra2Rm2 = (a1, 1)(R×R)(a2, 1)(R×R)(m,m2) ⊆ N1×M2. Since N1×M2

is a weakly 2-absorbing submodule of M1×M2 we have (a1, 1)(a2, 1) ∈ (N1×
M2 : M1 ×M2) or (a1, 1)(m,m2) ∈ N1 ×M2 or (a2, 1)(m,m2) ∈ N1 ×M2.
Hence a1a2 ∈ (N1 : M1) or a1m ∈ N1 or a2m ∈ N1 a contradiction. Hence
a1Ra2M2 = 0.

(2) ⇒ (1).

Let a1, a2 ∈ R and (m1,m2) ∈ M1 × M2 such that (0, 0) 6= (a1, a1)(R ×
R)(a2, a2)(R × R)(m1,m2) ⊆ N1 × M2. If 0 6= a1Ra2Rm1 then 0 6=
a1Ra2Rm1 ⊆ N1 and N1 a weakly 2-absorbing submodule of M1 gives a1a2 ∈
(N1 : M1) or a1m1 ∈ N1 or a2m2 ∈ N1. Hence (a1, a1)(a2, a2) ∈ (N1 ×M2 :
M1×M2) or (a1, a1)(m1,m2) ∈ N1×M2 or (a2, a2)(m1,m2) ∈ N1×M2. Thus
N1 ×M2 is a weakly 2-absorbing submodule of M1 ×M2. If a1Ra2Rm1 = 0,
then a1Ra2Rm2 6= 0 and therefore a1Ra2M2 6= 0. By b. a1a2 ∈ (N1 : M1) or
a1m1 ∈ N1 or a2m2 ∈ N1. Thus (a1, a1)(a2, a2) ∈ (N1 ×M2 : M1 ×M2) or
(a1, a1)(m1,m2) ∈ N1 ×M2 or (a2, a2)(m1,m2) ∈ N1 ×M2. Hence N1 ×M2

is a weakly 2-absorbing submodule of M1 ×M2. 2
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Proposition 5.8. Let Ni be a submodule of an Ri-module Mi, for i = 1, 2, 3. If N
is a weakly 2-absorbing submodule of M1 ×M2 ×M3, then N = {(0, 0, 0)} or N is
a 2-absorbing submodule of M1 ×M2 ×M3.

Proof. Suppose that N is a weakly 2-absorbing submodule of M1 × M2 × M3

that is not 2-absorbing . We will show that N = {(0, 0, 0)}. Now suppose that
N1 × N2 × N3 6= {0} × {0} × {0}. Thus Ni 6= {0}, for some i = 1, 2, 3. We claim
that N1 6= {0}. There exists m1 ∈ N1 such that m1 6= 0. To show that N2 = M2

or N3 = M3. Assume that N2 6= M2 and N3 6= M3. Thus there exist m2 ∈M2 and
m3 ∈ M3 such that m2 /∈ N2 and m3 /∈ N3. Since (1, 0, 1)(1, 1, 0)(m1,m2,m3) =
(m1, 0, 0) 6= (0, 0, 0), we have (0, 0, 0) 6= (1, 0, 1)(R1 × R2 × R3)(1, 1, 0)(R1 × R2 ×
R3)(m1,m2,m3) ⊆ N1×N2×N3. Now, because N1×N2×N3 is a weakly 2-absorbing
submodule of M1×M2×M3, we have (1, 0, 1)(1, 1, 0) ∈ (N1×N2×N3 : M1×M2×M3)
or (1, 0, 1)(m1,m2,m3) ∈ N1 × N2 × N3 or (1, 1, 0)(m1,m2,m3) ∈ N1 × N2 × N3.
Hence m2 ∈ N2 or m3 ∈ N3 a contradiction. Therefore N = N1 ×M2 ×N3 or N =
N1×N2×M3. If N = N1×M2×N3, then (0, 1, 0) ∈ (N1×M2×N3 : M1×M2×M3).
By Proposition 3.11, {0}×M2×{0} = (0, 1, 0)2N ⊆ (N : N1×M2×N3) = {(0, 0, 0)},
which is a contradiction. Hence N = {(0, 0, 0)}. 2
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