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ABSTRACT. We study the structure of rings whose factor rings modulo nonzero proper
ideals are right duo; such rings are called right F'D. We first see that this new ring property
is not left-right symmetric. We prove for a non-prime right FD ring R that R is a sub-
direct product of subdirectly irreducible right FD rings; and that R/N.(R) is a subdirect
product of right duo domains, and R/J(R) is a subdirect product of division rings, where
N.(R) (J(R)) is the prime (Jacobson) radical of R. We study the relation among right
FD rings, division rings, commutative rings, right duo rings and simple rings, in relation
to matrix rings, polynomial rings and direct products. We prove that if a ring R is right
FD and 0 # e = e € R then eRe is also right FD, examining that the class of right FD
rings is not closed under subrings.

1. Introduction

Throughout this note every ring is an associative ring with identity unless oth-
erwise stated. Let R be a ring. We use N(R), J(R), N.(R), N*(R), and W(R)
to denote the set of all nilpotent elements, Jacobson radical, lower nilradical (i.e.,
prime radical), upper nilradical (i.e., the sum of all nil ideals), and the Wedder-
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burn radical (i.e., the sum of all nilpotent ideals) of R, respectively. The center of
R is denoted by Z(R). It is well-known that W(R) C N.(R) C N*(R) C N(R)
and N*(R) C J(R). U(R) denotes the group of all units in R. The polynomial
(resp., power series) ring with an indeterminate x over R is denoted by R[z] (resp.,
R][[x]]). Z (Z,,) denotes the ring of integers (modulo n). Denote the n by n (n > 2)
full (resp., upper triangular) matrix ring over R by Mat, (R) (resp., T,,(R)). Write
D, (R) = {(aij) € To(R) | a11 = - -+ = ann}. Use E;; for the matrix with (¢, j)-entry
1 and zeros elsewhere. I, denotes the identity matrix in Mat, (R). ][] means the
direct product. Use |S]| to denote the cardinality of a given set S. The characteristic
of R is written by ch(R). An element u of R is called right (resp., left) regular if
ur = 0 (resp., ru = 0) for r € R implies 7 = 0. An element is regular if it is both
left and right regular. The monoid of all regular elements in R is denoted by C(R).

This article is motivated by the results in [9]. In Section 2 we study the structure
of right FD rings, focusing on the relation among right FD rings, commutative rings
and simple rings. We investigate that in several kinds of ring extensions that play
important roles in ring theory. In Section 3 we examine the right FD property of
polynomial rings, subrings and direct products for given right FD rings.

A ring is called Abelian if every idempotent is central. Following Feller [2], a
ring is called right duo if every right ideal is two-sided. Left duo rings are defined
similarly. A ring is called duo if it is both left and right duo. Right (left) duo rings
are easily shown to be Abelian. A ring is usually called reduced if it has no nonzero
nilpotents. It is easily checked that a ring R is reduced if and only if a®> = 0 for
a € R implies a = 0. Reduced rings are clearly Abelian, but not conversely by [6,
Lemma 2].

2. When Factor Rings are Right Duo

In this section we are concerned with the class of rings whose factor rings modulo
nonzero proper ideals are right duo. A ring R shall be called right F'D if R is simple,
or else R/I is a right duo ring for every nonzero proper ideal I of R. A left FD ring
is can be defined similarly. A ring is called F'D if it is both right and left FD. There
exist many non-simple FD rings as we will see. We first examine the following basic
results about right duo rings.

Lemma 2.1.
(1) Ewvery simple (or right primitive) right duo ring is a division ring.
(2) FEvery prime right (left) duo ring is a domain.

(3) The class of right (left) duo rings is closed under factor rings and direct
products.

(4) If R is a division ring then D2(R) is a duo ring; but D, (A) is neither right
nor left duo for all n > 3 over any ring A.

(5) Let A be any ring and n > 3. Then T, (A) is neither right nor left FD.
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(6) Let A be any ring and n > 4. Then D, (A) is neither right nor left FD.

(7) The class of right (left) FD rings is closed under factor rings.

Proof. (1) Let R be a simple right duo ring and 0 # a € R. Then aR = RaR = R,
so that a € U(R). Thus R is a division ring. Every right primitive right duo ring is
a division ring through a simple computation.

(2) Let R be a prime right duo ring and suppose that ab = 0 for a,b € R. Then
aRb C abR =0, so that a = 0 or b = 0. Thus R is a domain.

(3) is obvious.

(4) Take 0 # (asj) € Da(R). If ai; # 0 then (a;;) € U(D2(R)), so that
Dy(R)(aij) = D2(R) = (ai;)D2(R). Assume a;; = 0. Then a;2 # 0 and so
DQ(R)(aij) = (8 ]g) = DQ(R)(GU)DQ(R) = (aij)Dg(R). So DQ(R) is duo. Next
consider D,,(A) for n > 3 over any ring A. Then AE(,_,), is a right ideal of D,,(A),
but not two-sided; and AF15 is a left ideal of D,,(A), but not two-sided. So D,,(A)
is neither right nor left duo.

(5) Note that T,,(A) is not simple. Consider the proper ideal I = AFE;, +
ABEsp + -+ -4+ AE (1) + AEy, of T,(A). Then T;,(A)/I is isomorphic to 7,1 (A)
that is non-Abelian (hence not right duo) since n > 3. Thus T, (A) is not right FD.

(6) Note that D, (A) is not simple. Consider the proper ideal J = AE, +
AFEsp 4 -+ + AE(;, 1), of Dy(A). Then D,(A)/J is isomorphic to D,_1(A) that
is not right duo by (4) since n — 1 > 3. Thus D,,(A) is not right FD.

(7) Let R be a right FD ring and I be a proper ideal of R. Consider R/I. If
I =0 then R/0 is right FD. So assume I # 0. Let J/I be a proper nonzero ideal of
R/I. Then J is a nonzero proper ideal of R. So (R/I)/(J/I) = R/J is right duo.
Thus R/I is right FD.

The proofs for the left cases of (1)-(7) are similar. m

Right duo rings are right FD by Lemma 2.1(3); but the converse is not true
in general by the following. Note that Mat, (A) cannot be Abelian (hence neither
right nor left duo) for n > 2 over any ring A. If A is simple then Mat,(A) is simple
(hence FD). In the following we consider the right FD property of T,,(R) and D,,(R)
for n = 2 and n = 3, respectively, based on Lemma 2.1(5, 6).

Theorem 2.2. Let R be a ring and n > 2.

(1) R is simple if and only if Mat,(R) is right FD if and only if Mat,(R) is
simple.

(2) The following conditions are equivalent:
(i) R is a division ring;
(ii) Ta(R) is a right (left) FD ring;
(iii) Ds(R) is a right (left) FD ring.
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(3) Let R be simple. Then R is a division ring if and only if Do(R) is right (left)
FD.

Proof. (1) It suffices to show that if Mat, (R) is right FD then R is simple. Let R
be non-simple. Consider a nonzero proper ideal I of R. Then Mat,(R)/Mat,(I)
is isomorphic to Mat, (R/I) that is not right duo. So Mat, (R) is not right FD.

(2) We apply the proof of [9, Theorem 1.10(3)]. (i) = (ii). Let F' be a division
ring and R = T5(F). A nonzero proper ideal of R is one of the following: I} =
(O F) I, = (F F) and I3 = (0 F) Then R/I; ¥ F x Fand R/I, 2 F =

0 0)2 0o o) = \o F) ! 2
R/I3, hence they are duo. So R is FD.

(ii) = (i). Suppose that T5(R) is right FD. Assume that R is not simple. Then
T5(R)/T»(M) is isomorphic to the non-Abelian (hence not right duo) ring T5(R/M)
for each maximal ideal M of R, entailing that T>(R) is not right FD. Thus R must
8 g of T5(R). Then T»(R)/I is
isomorphic to R, and hence R is right duo because T>(R) is right FD. Summarizing,
R is a division ring by Lemma 2.1(1). The proof for the left case is similar.

(i) = (iii). Let R be a division ring. Then it is easy to check that each

be simple. Next consider the proper ideal I =

0 0 R 0 R R
nonzero proper ideal of D3(R) is one of the following: |0 0 0], |0 0 0],
0 0 O 0 0 0
0 0 R 0 R R
0 0 Rl and [0 O R|. So the factor rings modulo by these ideals are
0 0 O 0 0 O
isomorphic to
a b 0
R = 0 a c¢]||abceRandbc=0p,Dy(R),Ds(R) and R,
0 0 a

respectively. Note that Dy(R) is duo by Lemma 2.1(4) and R is clearly duo. Next
R’ is isomorphic to the subring

)la,b,ce R

QO O
o o
Q0 O

b 0
a a
0 0

—
o o Qe

of D3(R) x Ds(R), which is also isomorphic to the subring

(G o) aproneen)

of Da(R) x Dy(R). This ring is duo by the proof of Lemma 2.1(4), noting that every

non-invertible element is of the form ((8 8) , (8 8) ). Therefore D3(R) is FD.
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(iii) = (i). Suppose that D3(R) is right FD. Assume that R is not simple.
Then D3(R)/D3s(M) is isomorphic to the noncommutative ring D3(R/M), that is
not right duo by Lemma 2.1(4), for a maximal ideal M of R. So D3(R) is not right

0 R R
FD. Thus R must be simple. Next consider the proper ideal I = [0 0 R | of
0 0 O

Ds(R). Then D3(R)/I is isomorphic to R, and hence R is right duo because D3(R)
is right FD. Summarizing, R is a division ring by Lemma 2.1(1). The proof for the
left case is similar.

(3) Tt suffices to show the sufficiency by Lemma 2.1(4). Let Dy(R) is right FD.
Then R = M is right duo, and hence R is a division ring by Lemma 2.1(1),
where I = RFE15. The proof for the left case is similar. O

Following [9], a ring R is called FC'if R is simple, or else R/I is a commutative
ring for every nonzero proper ideal I of R. FC rings are clearly FD, but the converse
need not hold by Theorem 2.2(2). Indeed, letting R be a noncommutative division
ring, T>(R) is right FD by Theorem 2.2(2), but not FC by [9, Theorem 1.10(3)].

Following Birkhoff [1], a ring R is called subdirectly irreducible if the intersection
of all nonzero ideals in R is nonzero. It is obvious that a ring R is subdirectly
irreducible if and only if for every set of nonzero proper ideals of R, {K; |l € L}
say, we have Njer K; # 0. We will use this fact freely.

Lemma 2.3. Let R be a non-prime right (resp., left) FD ring. Then each of the
following holds.

(1) R is a subdirect product of subdirectly irreducible right (resp., left) FD rings.

(2) R/N.(R) is a subdirect product of right (resp., left) duo domains, and R/J(R)
is a subdirect product of division rings.

(3) If R is semiprime then R is a subdirect product of right (resp., left) duo
domains (hence reduced).

Proof. (1) Tt is proved by Birkhoff [1] that any ring is a subdirect product of
subdirectly irreducible rings. We apply the proof of [10, Theorem 4.12.3]. For
any 0 # a € R, there exists a proper ideal M, that is maximal with respect
to the property that a ¢ M,. Then NozeerM, = 0, and R/M, is subdirectly
irreducible since every nonzero ideal of R/M, contains a + M, by the maximality
of M,. Moreover R/M, is right FD by Lemma 2.1(7). Therefore R is a subdirect
product of subdirectly irreducible right FD rings R/M,. The left case can be proved
similarly.

(2) Let P; (i € I) be all prime ideals of R. Then every P; is nonzero because R
is not prime. So R/P; is right duo since R is right FD. Moreover R/P; is a right
duo domain by Lemma 2.1(2). Thus R/N.(R) is a subdirect product of right duo
domains. The remainder is proved similarly by Lemma 2.1(1).

(3) is an immediate consequence of (2). The proofs of (1), (2) and (3) for the
left case are similar. O
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There exist non-prime FD rings which are not subdirectly irreducible. In fact,
each of Z x Z and Z,q is not subdirectly irreducible because J(Z x Z) = 0 and
PZpg N qZpq = 0, where p and ¢ are distinct prime numbers. This elaborates on
Lemma 1.3(1). The condition “non-prime” is not superfluous in Lemma 1.3(3) as
can be seen by the simple ring Mat,,(A) for n > 2 over a simple ring A.

Based on Lemma 1.3, one may ask whether a ring R is right FD if every right
primitive factor ring of R is a simple domain. But the answer is negative as follows.
There exists a semiprime ring R for which J(R) # 0 and R/J(R) is a simple domain,
but R is neither right nor left FD.

Example 2.4. We refer to the construction and argument in [7, Example 1.2] and
[8, Theorem 2.2(2)]. Let K be a simple domain that is neither right nor left duo
(e.g., the first Weyl algebra over a field of characteristic zero). Let R,, = Dan (K) for
61 21 . Next set R =J,~, Rn,
noting that R,, can be considered as a subring of R,, ;1 via 0. Then R is a semiprime
ring by [8, Theorem 2.2(2)]. But

n > 1 with the function o : R,, - R, 41 by A — (

J(R) = N*(R) ={(aij) € R|a; =0 for all i} and R/J(R) = K.

This implies that J(R) is maximal (hence primitive), entailing that every primitive
factor ring of R is a simple domain. But R is neither right nor left FD since R/J(R)
is neither right nor left duo.

Let R = Rx R. Then J(R') = J(R) x J(R) and all right (left) primitive factor
ring of R’ is M; = R x J(R) and My = J(R) x R. Note R'/J(R') =~ K x K and
R'/M; 2 K. But R’ is also neither right nor left FD by Lemma 2.1(7).

Following Neumann [12], a ring R is said to be regular if for each a € R there
exists b € R such that a = aba. Such a ring is also called von Neumann regular by
Goodearl [3]. It is shown that R is regular if and only if every principal right (left)
ideal of R is generated by an idempotent in [3, Theorem 1.1]. From this fact we can
easily conclude that every regular ring R is clearly semiprimitive (i.e., J(R) = 0).

Proposition 2.5. Let R be a non-prime reqular ring. Then the following conditions
are equivalent:

(1) R is right FD;

6
7

Every right primitive factor ring of R is a division ring;

(2) R is reduced;
(3) R is right duo;
(4) R is left duo;
(5) R isleft FD;
(6)

(7)

R is a subdirect product of division ring;
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(8) R is a subdirect product of domains.

Proof. Since R is regular, J(R) = 0 and hence N,(R) = 0. Thus R is reduced by
Lemma 2.3(3), showing (1) = (2) and (5) (2). (2) = (3) and (2) = (4) are
proved by [3, Theorem 3.2]. (3) = (1), (4) (5), (7) = (8) and (8) = (2) are
obvious.

(1) = (6) is obtained from Lemma 2.1(1) because R is right FD. (6) = (7) is
obvious since R is semiprimitive. m]

=
=

The condition “non-prime” is not superfluous in Proposition 2.5 as can be seen
by the regular ring Mat,(A) for n > 2 over a division ring A (refer to [3, Lemma
1.6]). Indeed, Mat, (A) is simple (hence FD) but not reduced.

Following [14], a ring R is called right (resp., left) quasi-duo if every maximal
right (resp., left) ideal of R is two-sided. It is obvious that a ring R is right quasi-duo
if and only if R/J(R) is right quasi-duo. Right duo rings are clearly right quasi-duo
but not conversely. It is proved by [5, Proposition 1] that a ring R is right quasi-duo
if and only if every right primitive factor ring of R is a division ring.

Proposition 2.6.
(1) Every non-prime right FD ring is right quasi-duo.

(2) If R is a non-prime right FD ring then R/J(R) is a reduced right quasi-duo
Ting.

Proof. (1) Let R be a non-prime right FD ring. Since R is not prime, every right
primitive ideal of R is nonzero. Then since R is right FD, R/P is right duo for
every right primitive ideal P of R. Hence R/P is a division ring by Lemma 2.1(1).
So R is right quasi-duo by [5, Proposition 1].
(2) is obtained from (1) and Lemma 2.3(2). O
The following elaborates upon Proposition 2.6.
Remark 2.7.

(1) Simple (hence FD) rings need not be quasi-duo by the existence of simple
domains which are not division rings (e.g., the first Weyl algebra over a field
of characteristic zero), which is compared with Proposition 2.6(1). Indeed
this domain is neither right nor left quasi-duo.

(2) There exist non-prime noncommutative FD rings as can be seen by T5(R) and
Ds3(R) over a division ring R (see Theorem 2.2(2)). This provides examples
to Proposition 2.6.

(3) Based on Proposition 2.6(1), one may ask whether a non-prime right quasi-
duo ring is right FD. But the answer is negative. Let A be a right quasi-duo
ring and R = T,,(A) for n > 3. Then R is right quasi-duo by [14, Proposition
2.1]. Let I = AEy,,. Then R/I is non-Abelian (hence not right duo), and so
R is not right FD.
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Next we will show that the FD property is not left-right symmetric.

Example 2.8. Consider a skewed trivial extension in [13, Definition 1.3] as follows.
Let R be a commutative ring with an endomorphism ¢ and M be an R-module.
For R & M, the addition and multiplication are given by (r1,m1) + (re,ms) =
(r1 +r2,m1 + meo) and (r1,m1)(re, ma) = (r172,0(r1)ms + mra). Then this con-
struction forms a ring. Following the literature, this extension is called the skew-
trivial extension of R by M, denoted by R o« M. Note that R o« R is isomorphic to
R[z; 0]/(x?) via the corresponding (r,m) ~ r+Zm, where R[z; 0] is the skew poly-
nomial ring, with the coefficients written on the right, only subject to ax = zo(a)
for @ € R and (2?) is the ideal of R[x;0] generated by x2.

Now let K be a field with a monomorphism o and M be a K-module. Suppose
that o is not surjective. Then K « M is a right duo ring that is not left duo by
[11, Theorem 2.5]. Next set E = Ry X Ry with Ry = K and Ry = K o« M. Then
E is right duo (hence right FD) but not left duo, by Lemma 2.1(3). Let I = K x 0.
Then E/I is isomorphic to the ring K oc M that is not left duo. Thus E is not left
FD.

3. Subrings, Polynomial Rings and Direct Products

In this section we study the right FD property of polynomial rings, subrings
and direct products of given right FD rings. We consider first the polynomial ring
case.

Theorem 3.1. The following conditions are equivalent for a given ring R:
(1) R[x] is right (left) FD;
(2) R is commutative;

(3) R[z] is commutative.

Proof. Tt suffices to prove that if R[z] is right FD then R is commutative. Let n > 3
and suppose that R[z] is right FD. We first obtain

R[z]

n—1 ~
R+Rx+ - -+ Rx R[]

from the nonzero proper ideal 2" R[z] of R[x]. Then since R[z] is right FD, the
ring R + Rx + --- 4+ Rz™ ! is right duo. This implies that for any a,b € R,
bla+z) = (a + z)f(x) for some f(xz) € R. Comparing the degrees of both sides,
we must get f(x) € R. ¢ say. It then follows that b = ¢ and ba = ac = ab. The
commuting of a and b can be shown also by [4, Lemma 3]. Thus R is commutative.
The proof of the left case is similar. O

We can show, by help of Theorem 3.1, that the right FD property does not pass
to polynomial rings.
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We can write the following by help of Theorem 3.1 and Lemma 2.1(3): For a
ring R, R[] is right (resp., left) FD if and only if R[x] is right (resp., left) duo.

We next argue about subrings of right (left) FD rings.
Example 3.2.

(1) Let R be the first Weyl algebra over a field of characteristic zero. Consider
RJx]. Since R]x] is right Noetherian domain, there exists the quotient division
ring, @ say. Q is clearly FD. But R|[z] is noncommutative, hence R[x] is
neither right nor left FD by Theorem 3.1.

(2) We extend (1). Let D be any right Noetherian domain that is not a division
ring. Let @ be the quotient division ring. Then T5(Q) is FD by Theorem
2.2(2). But the subring T»(D) is neither right nor left FD by Theorem 2.2(2)
because D is not a division ring.

In the following we find a kind of subring which inherits the right FD property.
Theorem 3.3.

(1) Let R be a ring and 0 # ¢* = e € R. If R is right (resp., left) duo then eRe
is right (resp., left) duo.

(2) Let R be a ring and 0 # €®> = e € R. If R is right (resp., left) FD then eRe
is right (resp., left) FD.

Proof. (1) Let R be a right duo ring and 0 # ¢? = e € R. Consider eae, ebe € eRe.
Since R is right duo, ebeae = eaec for some ¢ € R. This yields eaec = eaece =
eaeece. Thus eRe is right duo. The proof for the left case is similar.

(2) We apply the proof of [9, Theorem 1.12]. Suppose that R is simple. Then
eRe is simple (hence FD) by the proof of [9, Theorem 1.12].

Suppose that R is FC and eRe is non-simple. Then R is non-simple by the
preceding argument. Let J be a nonzero proper ideal of eRe. Then, by the proof
of [9, Theorem 1.12], J = eReJeRe = ele where I = ReJeR is a nonzero proper
ideal of R. Since R is right FD, R/I is right duo.

‘Write R = R/I and 7 = r+1 for r € R. Note that e ¢ J implies e ¢ I. So & # 0
in R. Next consider the epimorphism f : eRe — eRe defined by f(ere) = ere.

Since R is right duo, the subring eRe of R is also right duo by (1). So Keef(ef) (=

€Re) is right duo, where Ker(f) is the kernel of f. But Ker(f) = J by the proof
of [9, Theorem 1.12], so that (eRe)/J is right duo. Therefore eRe is right FD. The
proof for the left case is similar. O

Let A be a simple ring, B be a noncommutative ring and set R = Ax Blz|. Then
letting e = (1,0), we get eRe = A is simple (hence FD); but R/(A x 0) & Blz] is
not right FD by Theorem 3.1. Whence R is not right FD, showing that the converse
of Theorem 3.3(2) need not hold.

19
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Next let A be a simple ring and R = A x A. Then for e = (1,0) € R, eRe 2 A
is simple, but R is not simple; which shows that the converse of the first part of the
proof of Theorem 3.3(2) need not hold.

Recall that right duo rings are right FD. In contrast to Lemma 2.1(3), one may
ask whether the direct product of right FD rings is also right FD. But the answer
is negative as follows. Let A be a simple ring and n > 2. Then Mat,,(A) is simple
(hence FD). Set R = Mat,(A) x Mat,(A) x Mat,(A) and I = Mat,(A) x 0 x 0.
Then I is a nonzero proper ideal of R and R/ is isomorphic to Mat, (A) x Mat,(A)
that is not right duo. Thus R is not right FD.

In the following we see an equivalent condition for direct products of right FD
rings to be right FD.

Theorem 3.4. Let R; be rings for alli € I, and R=1]]
following conditions are equivalent:

(1) R is right FD;
(2) R; is right duo for alli € I;
(3) R is right duo.

ser Ri, where |I| > 2. The

Proof. (1) = (2). Suppose R is right FD. Let j € I and I; = {(ai)ier € R | a; = 0}.
Then I; is a nonzero proper ideal of R such that R/I; is isomorphic to R;. Since
R is right FD, R; is right duo.

(3) = (1) is obvious, and (2) = (3) is shown by Lemma 2.1(3). O
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