검색
Article Search

JMB Journal of Microbiolog and Biotechnology

OPEN ACCESS eISSN 0454-8124
pISSN 1225-6951
QR Code

Article

Kyungpook Mathematical Journal 2023; 63(1): 79-95

Published online March 31, 2023

Copyright © Kyungpook Mathematical Journal.

Notes on the Second Tangent Bundle over an Anti-biparaKaehlerian Manifold

Nour Elhouda Djaa, Aydin Gezer*

Relizane University, Faculty of Sciences and Technology, Department of Mathematics, 48000, Relizane-Algeria
e-mail : djaanor@hotmail.fr

Ataturk University, Faculty of Science, Department of Mathematics, 25240, Erzurum-Turkey
e-mail : aydingzr@gmail.com

Received: February 15, 2022; Accepted: June 8, 2022

In this note, we define a Berger type deformed Sasaki metric as a natural metric on the second tangent bundle of a manifold by means of a biparacomplex structure. First, we obtain the Levi-Civita connection of this metric. Secondly, we get the curvature tensor, sectional curvature, and scalar curvature. Afterwards, we obtain some formulas characterizing the geodesics with respect to the metric on the second tangent bundle. Finally, we present the harmonicity conditions for some maps.

Keywords: Berger type deformed Sasaki metric, anti-biparaKaehlerian structure, geodesics, second tangent bundle

Many geometric concepts can be defined by a suitable algebraic formalism. This point of view has interest because one can compare different geometric structures having similar algebraic expressions. In this paper, we will consider biparacomplex structures on a smooth 4n-dimensional manifold. An almost biparacomplex structure on a smooth manifold consists of two almost product structures φ1 and φ2 which satisfy [6, 8]

φ1φ2+φ2φ1=0.

The Nijenhuis tensor Nα of φα, for α=1 or 2, is defined by

Nα(X,Y)=[φαX,φαY]+φα2[X,Y]φα[X,φαY]φα[φαX,Y].

It is well known that the structure φα is integrable if and only if the corresponding Nijenhuis tensor Nα vanishes, Nα=0. Also, the classical definition of integrability of structures can be given in this way: a paracomplex structure φ is integrable if there exists a torsion free connection parallelizing φ [9]. If a torsion free connection parallelizes φ, then Nφ=0.

An anti-biparaHermitian metric is a Riemannian metric which is compatible with the (almost) biparacomplex structure φα in the sense that the metric g is pure with respect to each φα. We called such a structure (almost) anti-biparaHermitian. If φα is parallel with respect to the Levi-Civita connection for α=1 and 2, then the manifold is called anti-biparaKaehlerian manifold. The existence of anti-biparaKaehlerian structures on 4n-% dimensional Riemannian manifolds allow one to construct new Riemannian metrics on the second tangent bundle over 4n-dimensional Riemannian manifolds. This paper aims to construct a new metric on the second tangent bundle over an anti-biparaKaehlerian manifold and study its geometry.

Let (Mn,g) be an n-dimensional Riemannian manifold and (TM,π,M) be its tangent bundle. A local chart (U,xi)i=1...n on Mn induces a local chart (π1(U),xi,ui)i=1...n on TM. Denote by Γijk the Christoffel symbols of g and by ∇ the Levi-Civita connection of g.

We have two complementary distributions on TM, the vertical distribution V and the horizontal distribution H. Let X=Xixi be a local vector field on Mn. The vertical and the horizontal lifts of X are defined by

XV =Xiui, XH =Xiδδxi=Xi{xiujΓijkuk}

(see [11]).

An anti-paraKaehlerian manifold is a triple (Mn,g,φ) such as Mn is a manifold of even dimension (n=2k) and φ is an integrable almost product structure (φ2=I and φ=0) verifying

g(φ(X),Y)=g(X,φ(Y))

or equivalently

g(φ(X),φ(Y))=g(X,Y)

for all vector fields X,Y (for more details on the integrability, see [9]).

Definition 2.1. Let (Mn,g,φ) be an anti-paraKaehlerian manifold. A (φ,δ)-deformed Sasaki metric on TM is defined by

  • 1. gφ,δ(XH,YH)=ε2g(X,Y)π,

  • 2. gφ,δ(XH,YV)=0,

  • 3. gφ,δ|(x,u)(XV,YV)=gx(X,Y)+δ2gx(X,φ(u))gx(Y,φ(u)),

where X, Y are vector fields on Mn, (x,u)TM, ε{1,2} and δ is a constant.

  • 1. If δ=0 and ε=2 then gφ,δ is the Sasaki metric [11],

  • 2. If δ=1 and ε=2 then gφ,δ is the Berger type deformed Sasaki metric [1].

Lemma 2.2. Let (Mn,g,φ) be an anti-paraKaehlerian manifold. For all xMn and u=uixiTxM, we have the following

  • 1. XH(g(u,u))(x,u)=0,

  • 2. XH(g(Y,u))(x,u)=g(XY,u)x,

  • 3. XV(g(u,u))(x,u)=2g(X,u)x,

  • 4. XV(g(Y,u))(x,u)=g(X,Y)x,

  • 5. XV(g(Y,φ(u)))=g(Y,φ(X),

  • 6. XH(g(Y,φ(u)))=g(XY),φ(u).

Proposition 2.3. Let (Mn,g,φ) be an anti-paraKaehlerian manifold. Then we have

φR(X,Y)=R(X,Y)φ,R(X,φ(Y))=R(φ(X),Y),R(X,φ(X))=0

for all vector fields X,Y on Mn [9].

Let (Mn,g) be a Riemannian manifold and its Levi-Civita connection. The second tangent bundle is the natural bundle of 2-jets of differentiable curves, defined by

T2M={j02γ  γ:0M, is a smooth curve at 0}.

Theorem 3.1. ([3]) If TMTM denotes the Whitney sum, then

S:T2MTMTMj02γ (γ˙(0),(γ˙(0)γ˙)(0)

is a diffeomorphism of natural bundles.

In the induced coordinate, we have

S:(xi,ui,zi)(xi,ui,zi+ujukΓjki).

Definition 3.2. ([3]) Let T2M be the second tangent bundle endowed with the vectorial structure induced by the diffeomorphism S. For any section σΓ(T2M), we define two vector fields on Mn by

Xσ =P1SσandYσ=P2Sσ

where P1 and P2 denote the first and the second projection from TMTM onto TM.

Definition 3.3. ([3]) Let (Mn,g) be a Riemannian manifold and XΓ(TM) be a vector field on Mn. For λ=0,1,2, the λ-lifts of X to T2M are defined by

X(0)=S*1(XH,XH),X(1)=S*1(XV,0),X(2)=S*1(0,XV).

Theorem 3.4. Let (Mn,g) be a Riemannian manifold. If R denotes the Riemannian curvature tensor of (Mn,g), then on T2M we have

  • 1. [X(0),Y(0)]=[X,Y](0)(Rx(X,Y)u)(1)(Rx(X,Y)w)(2),

  • 2. [X(0),Y(i)]=(XY)(i),

  • 3. [X(i),Y(j)]=0,

where (x,u,w)=S(p) and i,j=1,2 [3].

Let the quadruple (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold such that n=4k and φ1(x)φ2(x) everywhere on Mn.

Definition 3.5. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold. We define a Berger type deformed Sasaki metric gBS on the second tangent bundle by

gBS=S*1(gφ1,δgφ2,η).

From Definition 3.5 and the formula (3.3), we obtain the following proposition.

Proposition 3.6. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold. If pT2M, then for all vector fields X, Y on Mn and i,j{0,1,2} (ij), we obtain

  • 1. gBS(X(0),Y(0))p=g(X,Y)x,

  • 2. gBS(X(i),Y(j))p=0,

  • 3. gBS(X(1),Y(1))p=g(X,Y)+δ2g(X,φ1(u))g(Y,φ1(u)))x,

  • 4. gBS(X(2),Y(2))p=g(X,Y)+η2g(X,φ2(w))g(Y,φ2(w))x,

where S(p)=(x,u,w)TxMnTxMn.

Theorem 3.7. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,g) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If ˜ denotes the Levi-Civita connection of (T2M,gBS), then for pT2M and for all vector fields X,Y on Mn we have

  • 1.(˜X(0)Y(0))p=(XY)(0)12(R(X,Y)u)(1)12(R(X,Y)w)(2),

  • 2.(˜X(0)Y(1))p=(XY)(1)+12(R(u,Y)X)(0),

  • 3.(˜X(0)Y(2))p=(XY)(2)+12(R(w,Y)X)(0),

  • 4.(˜X(1)Y(0))p=12(R(u,X)Y))(0),

  • 5.(˜X(2)Y(0))p=12(R(w,X)Y))(0),

  • 6.(˜X(1)Y(1))p=δ2λg(X,φ1(Y))(φ1(u))(1),

  • 7.(˜X(2)Y(2))p=η2βg(X,φ2(Y))(φ2(w))(2),

  • 8.(˜X(1)Y(2))p=(˜X(2)Y(1))p=0,

where S(p)=(x,u,w), λ=1+δ2|u|2, β=1+η2|w|2, and R denote the Levi-Civita connection and the Riemannian curvature tensor of (Mn,g), respectively.

Proof. Using the Proposition 3.6, the Lemma 2.2 and the Koszul formula, the Theorem 3.7 follows.

Let Mn,g,φ1,φ2 be an anti-biparaKaehlerian manifold and (T2M,gBS) its second tangent bundle equipped with the Berger type deformed Sasaki metric, F:TMTM

be a smooth bundle endomorphism of TM. The vector fields F(1), F(2) and F(0) on T2M are defined by

F(0)(u)=(Fu)(0),F(1)(u)=(Fu)(1)F(2)(u)=(Fu)(2).

Locally, we have

F(0)(u)=ui(Fi)(0),F(1)(u)=ui(Fi)(1)F(2)(u)=ui(Fi)(2).

Proposition 4.1. Let Mn,g,φ1,φ2 be an anti-biparaKaehlerian manifold and (T2M,gBS) its second tangent bundle equipped with the Berger type deformed Sasaki metric. Then we have the following formulas

  • 1.(˜X(0)F(0))p=((XF)(y))(0)12((Rx(X,Fy)u))(1)12((Rx(X,Fy)w))(2),

  • 2.(˜X(0)F(1))p=((XF)(u))(1)+12((Rx(u,Fu)X))(0),

  • 3.(˜X(0)F(2))p=((XF)(w))(2)+12((Rx(w,Fw)X))(0),

  • 4.(˜X(1)F(0))p=((FX))(0)+12((Rx(u,X)Fu)))(0),

  • 5.(˜X(2)F(0))p=((FX))(0)+12((Rx(w,X)Fw)))(0),

  • 6.(˜X(1)F(1))p=δ2λg(X,φ1(Fu))(φ1(u))(1)+(FX)(1),

  • 7.(˜X(2)F(2))p=η2βg(X,φ1(Fw))(φ2(w))(2)+(FX)(2),

  • 8.(˜X(1)F(2))p=(˜X(2)F(1))p=0

for any vector field X on Mn, S(p)=(u,w) and y{u,w}.

Proof. The results come directly from the Theorem 3.7.

Theorem 4.2. Let Mn,g,φ1,φ2 be an anti-biparaKaehlerian manifold and (T2M,gBS) its second tangent bundle equipped with the Berger type deformed Sasaki metric. Then we have the following formulas

R˜p(X(0),Y(0))Z(0)=12(( Z R)(X,Y)u)(1)       +12(( Z R)(X,Y)w)(2)       +[R(X,Y)Z+14R(u,R(Z,Y)u)X+14R(u,R(X,Z)u)Y       +12R(u,R(X,Y)u)Z+14R(w,R(Z,Y)w)X       +14R(w,R(X,Z)w)Y+12R(w,R(X,Y)w)Z](0), R˜p(X(0),Y(0))Z(1)=[R(X,Y)Z+14R(R(u,Z)Y,X)u14R(R(u,Z)X,Y)u](1)       +[14R(R(u,Z)Y,X)w14R(R(u,Z)X,Y)w](2)       +12[( X R)(u,Z)Y( Y R)(u,Z)X](0)       +δ2λg(φ1(Z),R(X,Y)u)( φ1 u)(1), R˜p(X(0),Y(0))Z(2)=[R(X,Y)Z+14R(R(w,Z)Y,X)w14R(R(w,Z)X,Y)w](2)       +[14R(R(w,Z)Y,X)u14R(R(w,Z)X,Y)u](1)       +12[( X R)(w,Z)Y( Y R)(w,Z)X](0)       +η2βg(φ2(Z),R(X,Y)w)( φ 2 w)(2), R˜(X(0),Y(1))Z(0)=[12R(X,Z)Y+14R(R(u,Y)Z,X)u](1)+14[R(R(u,Y)Z,X)w](2)       +12[XR)(u,Y)Z](0)+δ 2λg(φ1(Y),R(X,Z)u)( φ1 u)(1), R˜p(X(0),Y(2))Z(0)=[12R(X,Z)Y+14R(R(w,Y)Z,X)w](2)+14[R(R(w,Y)Z,X)u](1)       +12[XR)(w,Y)Z](0)+η 2βg(φ2(Y),R(X,Z)w)( φ2 w)(2), R˜p(X(0),Y(1))Z(1)=12[R(Y,Z)X+12(R(u,Y)R(u,Z)X)](0), R˜p(X(0),Y(2))Z(2)=12[R(Y,Z)X+12(R(w,Y)R(w,Z)X)](0), R˜p(X(1),Y(1))Z(0)=[R(X,Y)Z+14R(u,X)R(u,Y)Z14R(u,Y)R(u,X)Z](0),  R˜p(X(2),Y(2))Z(0)=[R(X,Y)Z+14R(w,X)R(w,Y)Z14R(w,Y)R(w,X)Z](0), R˜p(X(1),Y(1))Z(1)=δ4λ2[g(Y,u)g(X,φ1Z)g(X,u)g(Y,φ1Z)]( φ 1 u)(1)       +δ2λ[g(Y, φ 1 Z) φ 1 Xg(X, φ 1 Z) φ 1 Y](1), R˜p(X(2),Y(2))Z(2)=η4β2[g(Y,w)g(X,φ2Z)g(X,w)g(Y,φ2Z)]( φ 2 w)(2)       +η2β[g(Y, φ 2 Z) φ 2 Xg(X, φ 2 Z) φ 2 Y](2)

for all vector fields X, Y,Z on Mn.

Proof. The results come directly from the Theorem 3.7 and the Proposition 4.1.

Let (e1,...,en) (resp (e¯1,...,e¯n)) be an orthonormal frame of TxM where e1=φ1uu (resp e¯1=φ2ww). Then

{Ei=(e i )(0),En+1=1λ(e 1 )(1),En+k=(ek )(1),         E2n+1=1β( e¯ 1 )(2),E2n+k=( e¯k )(2)}k=2...ni=1...n

is an orthonormal frame of TpT2M, where p=S1(x,u,w).

Let K˜ be the sectional curvature of (T2M,gBS) defined by

K˜=gBS(R˜(X˜,Y˜)Y˜,X˜)

for orthonormal vector fields X˜,Y˜ on T2M. From the Theorem 4.2, standard calculations give the following result.

Proposition 4.3. Let Mn,g,φ1,φ2 be an anti-biparaKaehlerian manifold and (T2M,gBS) its second tangent bundle equipped with the Berger type deformed Sasaki metric. We have the following formulas

  • 1.K˜(Ei,Ej)=K(ei,ej)34R(ei,ej)u234R(ei,ej)w2,

  • 2.K˜(Ei,En+1)=K˜(Ei,E2n+1)=0,

  • 3.K˜(Ei,En+k)=14R(u,ek)ei2,

  • 4.K˜(Ei,E2n+k)=14R(w,e¯ k)ei2,

  • 5.K˜(En+1,En+k)=δ4λ2(λ1)[g(φ1(u),u)g(φ1(ek),ek)g(ek,u)2],

  • 6.K˜(E2n+1,E2n+k)=η4β2(β1)[g(φ2(w),w)g(φ2(e¯ k),e¯ k)g(e¯ k,w)2],

  • 7.K˜(En+l,En+k)=δ2λ[g(φ1(el),el)g(φ1(ek),ek)g(ek,φ1(el))2],

  • 8.K˜(E2n+l,E2n+k)=η2β[g(φ2(e¯ l),e¯ l)g(φ2(e¯ k),e¯ k)g(e¯ k,φ2(e¯ l))2].

The relationship between the scalar curvature r˜ of (T2M,gBS) and the scalar curvature r of (Mn,g) is given in the following theorem.

Theorem 4.4. Let Mn,g,φ1,φ2 be an anti-biparaKaehlerian manifold and (T2M,gBS) its second tangent bundle equipped with the Berger type deformed Sasaki metric. The corresponding scalar curvature r˜ is given by

r˜=ri,j=1n34[R(ei,ej)u2+R(ei,ej)w2]+δ2λA2+2δ4λ2(λ1)g(φ1u,u)A+i,j=1n12[R(u,ej)ei2+R(w, e¯ j)ei2]+η2βB2+2η4β2(β1)g(φ2w,w)Bδ6(λ+1)(λ+2)λ2 (λ1)3g( φ 1 (u),u)2+δ2((2n)λ2)λ2η6(β+1)(β+2)β2 (β1)3g( φ 2 (w),w)2+η2((2n)β2)β2,

where A= i=2ng(φ1(ei),ei) and B= i=2ng(φ2(e¯i),e¯i).

Theorem 4.5. Let Mn,g,φ1,φ2 be a flat anti-biparaKaehlerian manifold and (T2M,gBS) its second tangent bundle equipped with the Berger type deformed Sasaki metric. The corresponding scalar curvature r˜ is given by

r˜=δ2λA2+2δ4λ2(λ1)g(φ1u,u)A+η2βB2+2η4β2(β1)g(φ2w,w)B    δ6(λ+1)(λ+2)λ2(λ1)3g(φ1(u),u)2+δ2((2n)λ2)λ2   η6(β+1)(β+2)β2(β1)3g(φ2(w),w)2+η2((2n)β2)β2,

where A= i=2ng(φ1(ei),ei) and B= i=2ng(φ2(e¯i),e¯i).

Lemma 5.1. ([10])} Let (Mn,g) be a Riemannian manifold. If X,Y are vector fields and (x,u)TM such that Xx=u, then we have

dxX(Yx)=Y(x,u)H+(YX)(x,u)V.

Lemma 5.2. Let (Mn,g) be a Riemannian manifold. If ZΓ(TM), σΓ(T2M) and p=σ(x). Then we have

dxσ(Zx)=Zp(0)+(ZXσ)p(1)+(ZYσ)p(2).

Proof. Using the Lemma 5.1, we obtain

dxσ(Z)=dS1(dXσ(Z),dYσ(Z))S(p)   =dS1(ZH,ZH)S(p)+dS1((ZXσ)V,(ZYσ)V)S(p)   =Zp(0)+(ZXσ)p(1)+(ZYσ)p(2).

Lemma 5.3. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric and x:IMn be a curve on Mn. If C:tIC(t)=S1(x(t),y(t),z(t)) is a curve in T2M such that y(t),z(t) are vector fields along x(t) (i.e., y(t),z(t)Tx(t)M), then we have

C˙= x ˙ (0)+( x ˙ y)(1)+( x ˙ z)(2),

where x˙=dxdt and C˙=dCdt.

Proof. Locally, if Y,Z are vector fields such that Y(x(t))=y(t) and Z(x(t))=z(t), then from the Lemma 5.2 we obtain

C˙(t)=dC(t)=dσ(x˙(t))= x ˙ (0)+( x ˙y)(1)+( x ˙z)(2),

where σ=S1((Y,Z)).

Subsequently, we denote x=x˙, x= x˙x˙, y=x˙y and y=x˙x˙y.

Theorem 5.4. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If C(t)=S1(x(t),y(t),z(t)) is a curve on T2M such that y(t),z(t) are vector fields along x(t), then

˜C˙C˙=(x+R(y,y)x+(R(z,z ) x )(0)+(y+δ2λg(y,φ1(y))( φ 1 (y))(1)   +(z+η2βg(z,φ2(z))( φ 2 (z))(2).

Proof. From the formula (5.2) and the Theorem 3.7, we have

˜C˙C˙=˜[x˙(0)+( x˙y)(1)+( x˙z)(2)][x˙(0)+( x ˙ y)(1)+( x ˙ z)(2)]   =(x )(0)+(y )(1)+(R(y,y )x )(0)+δ2λg(y,φ1(y))( φ 1 (y))(1)   +(z )(2)+(R(z,z )x )(0)+η2βg(z,φ2(z))( φ 2 (z))(2).

From the theorem above we get the following theorem.

Theorem 5.5. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If C(t)=S1(x(t),y(t),z(t)) is a curve on T2M such that y(t),z(t) are vector fields along x(t), then C is a geodesic if and only if

x=R(y,y)xR(z,z)x, y=δ21+δ2y2g(y,φ1(y))(φ1(y)), z=η21+η2z2g(z,φ2(z))(φ2(z)).

From the Theorem 5.5, we obtain the following results.

Theorem 5.6. Let (Mn,g,φ1,φ2) be a locally flat anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If C(t)=S1(x(t),y(t),z(t)) is a curve on T2M such that y(t),z(t) are vector fields along x(t), then C(t) is a geodesic on (T2M,gBS) if and only if x(t) is a geodesic on (Mn,g,φ1,φ2) and

y=δ21+δ2y2g(y,φ1(y))(φ1(y)), z=η21+η2z2g(z,φ2(z))(φ2(z)).

Corollary 5.7. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If C(t)=S1(x(t),y(t),z(t)) is the horizontal lift of the curve x(t) (i.e y'=z'=0), then C(t) is a geodesic on (T2M,gBS) if and only if x(t) is a geodesic on (Mn,g,φ1,φ2).

Corollary 5.8. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. The natural lift C(t)=S1(x(t),x˙(t),x˙(t)) of any geodesic x(t) is a geodesic on (T2M,gBS).

Theorem 5.9. Let (Mn,g,φ1,φ2) be a locally symmetric anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If C(t)=S1(x(t),y(t),z(t)) is a curve on T2M such that y(t),z(t) are vector fields along x(t), then we have

x(p+1)=[R(y,y)+R(z,z)]x(p), |x(p)|=const., g(x(p+1),x(p))=0

for all p1.

Proof. Using the formula (5.4), we have

x(3)=[R(y,y)+(R(z,z)]x[R(y,y)+(R(z,z)]x(2),

by substituting (5.5) and (5.6) in (5.10), we obtain

x(3)=[R(y,y)+R(z,z)]x(2)+[δ21+δ2y2g(y,φ1(y))R(y,φ1(y))   +η21+η2z2g(z,φ2(z))R(z,φ2(z))]x,

thus, from the Proposition 2.3, we obtain

x(3)=[R(y,y)+R(z,z)]x(2).

By induction on p, the formula (5.7) is obtained. On the other hand, we have

x˙g(x(p),x(p))=2g(x(p+1),x(p))=2g([R(y,y)+R(z,z)]x(p),xP)=0,

which completes the proof.

Theorem 5.10. Let (Mn,g,φ1,φ2) be a locally symmetric anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If C(t)=S1(x(t),x˙(t),x˙(t)) is a natural lift of the curve x˙(t) on T2M, then all geodesic curvatures of γ=x(t) are constants.

Proof. Using the Proposition 3.6, and the formulas (5.2) and (5.9), we obtain

C˙2=|dxdt|2+2|x|2+δ2g( x ,φ1( x ))2+η2g( x ,φ 2( x ))2  =|x|2+2|x|2=K2=const.

Denote by s an arc length parameter on x(t) and |x|=ρ=const. Then xt=dxdt=xsdsdt and

K2=C˙2=|dxdt|2+2|x|2=|dsdt|2+2|x|2=|dsdt|2+2ρ2.

Hence

|dsdt|=K22ρ2=β=const.,

where β2=K22ρ2.

Denote by ν1,.....,ν2n1 the Frenet frame along γ and by k1,....,k2n1 the geodesic curvatures of γ. From (5.11), we obtain

x=βν1x=β2k1ν2x(3)=β3k1(k1ν1+k2ν3)

Using the formula (5.8) we deduce k1=const., k2=const., ...., k2n1=const., which completes the proof.

Consider a smooth map ϕ:(Mm,g)(Nn,h) between two Riemannian manifolds, then the second fundamental form of ϕ is defined by

Bϕ(X,Y)=(dϕ)(X,Y)=Xϕdϕ(Y)dϕ(XY).

Here is the Riemannian connection on Mm and ϕ is the pull-back connection on the pull-back bundle ϕ1TN, and

τ(ϕ)=tracegdϕ=tracegBϕ

is the tension field of ϕ. A map ϕ is called to be harmonic if and only if τ(ϕ)=0.

If ψ:(Nn,g)( N¯n,h¯) is a smooth map between two Riemannian manifolds, then we have

τ(ψϕ)=dψ(τ(ϕ))+tracegdψ(dϕ,dϕ).

One can refer to [4], [5], [7], [10] for background on harmonic maps.

6.1. Harmonicity conditions of inclusion

Theorem 6.1. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If gS denotes the Sasaki metric on TM, then the tension field of the inclusion

I2:(TM,gS)(T2M,gBS)   (x,u)S1((x,u,u))

is given by

τ(I2)(x,u)=δ 21+δ 2u 2tracegg(*,φ1(*))( φ 1(u))(1)    +η 21+η 2u 2tracegg(*,φ2(*))( φ2(u))(2).

Proof. Let X be a vector field on Mn, then we have

I2(XH)=dS1(XH,XH)=X(0),dI2(XV)=dS1(XV,XV)=X(1)+X(2).

Let xM, {ei}i=1n be a local orthonormal frame on Mn and ¯ be the Levi-Civita connection of the Sasaki metric gS. We have

BI2(eiH,eiH)=˜dI2(eiH)dI2(eiH)dI2(¯eiHeiH)=˜ei0ei0( ¯ e i e i )0=0,BI2(eiV,eiV)=˜dI2(eiV)dI2(eiV)dI2(¯eiVeiV)    =˜ei1+ei2(ei1+ei2)=˜ei1(ei1)+˜ei2(ei2)    =δ21+δ2u2g(ei,φ1(ei))( φ 1 (u))(1)    +η21+η2u2g(ei,φ2(ei))( φ 2 (u))(2).

From Theorem 6.1, we have the following corollary.

Corollary 6.2. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If gS denotes the Sasaki metric on TM, the inclusion I2:(TM,gS)(T2M,gBS) is a harmonic map if and only if

tracegg(*,φ1(*))=tracegg(*,φ2(*))=0.

Let (Mn,h,φ) be an anti-biparaKaehlerian manifold and (TM,hBS) be its tangent bundle with the Berger type deformed Sasaki metric hBS=gφ,ρ and ε=2 (see [2]). By a standard calculation we get the following result.

Theorem 6.3. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. Then the tension field of the inclusion I2:(TM,hBS)(T2M,gBS) is given by

τ(I2)(x,u)=[h¯ij( δ2 1+δ2ug2g(Ei,φ1(Ej))φ1u ρ2 1+ρ2u h2h(Ei,φ(Ej))φu)](1)    +[h¯ ij( η2 1+η2ug2g(Ei,φ2(Ej))φ2u ρ2 1+ρ2u h2h(Ei,φ(Ej))φu)](2),

where {Ei}i=1n is a local orthonormal frame on Mn and hij=hBS(EiV,EjV)=δij+ρ2φ(u)iφ(u)j.

From Theorem 6.3, we obtain the following corollary.

Corollary 6.4. The inclusion I2:(TM,hBS)(T2M,gBS) is a harmonic map if and only if

h¯ijδ21+δ2ug2g(Ei,φ1(Ej))φ1u=h¯ijρ21+ρ2u h2h(Ei,φ(Ej))φu,h¯ijη21+η2ug2g(Ei,φ2(Ej))φ2u=h¯ijρ21+ρ2u h2h(Ei,φ(Ej))φu.

6.2. Harmonicity conditions of projections

Let (E1,...,En) be orthonormal vector fields on Mn. The matrix of Berger type deformed Sasaki metric on T2M with respect to (E1(0),...,En(0),E1(1),...,En(1),E1(2),...,En(2)) is as follows

gBS=δij000aij000bij, gBS1=δij000aij000bij,

where a=(δij+δ2(φ1u)i(φ1u)j)i,jn and b=(δij+δ2(φ21w)i(φ2w)j)i,jn.

Lemma 6.5. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If π:(T2M,gBS)(Mn,g) denotes the canonical projection, then we have

Bπ(Ei0,Ej0)p=Bπ(Ej1,Ei1)=Bπ(Ej2,Ei2)=0,Bπ(Ei0,Ej1)p=12Rx(u,Ej)Ei,Bπ(Ei0,Ej2)p=12Rx(w,Ej)Ei,Bπ(Ei1,Ej2)p=0.

Theorem 6.6. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. The canonical projection π:(T2M,gBS)(Mn,g,φ1,φ2) is totally geodesic if and only if is locally flat. Moreover v is a harmonic map.

Lemma 6.7. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. If π:(T2M,gBS)(TM,gS) denotes the canonical projection, then we have

π*(X0)=XH,π*(X1)=XV,π*(X2)=0.Bπ(Ei0,Ej0)p=Bπ(Ej2,Ei2)=Bπ(Ei0,Ej1)p=0,Bπ(Ei1,Ej1)p=δ21+δ2ug2g(Ei,φ1Ej)(φ1u)V,Bπ(Ei0,Ej2)p=12(Rx(w,Ej)Ei)H,

where (E1,...,En) is a local orthonormal frame on Mn.

Theorem 6.8. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. The canonical projection π:(T2M,gBS)(TM,gS) is a harmonic map if and only if

aijg(Ei,φ1Ej)=0.

Theorem 6.9. Let (Mn,g,φ1,φ2) be an anti-biparaKaehlerian manifold and (T2M,gBS) be its second tangent bundle equipped with the Berger type deformed Sasaki metric. The canonical projection π:(T2M,gBS)(TM,hBS) is a harmonic map if and only if

δ21+δ2ug2aijg(Ei,φ1Ej)φ1u=ρ21+ρ2uh2aijh(Ei,φ1Ej)φu.
  1. M. Altunbas, R. Simsek and A. Gezer, Some harmonic problems on the tangent bundle with a Berger-type deformed Sasaki metric, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 82(2)(2020), 37-42.
  2. M. Altunbas, R. Simsek and A. Gezer, A study concerning Berger type deformed Sasaki metric on the tangent bundle, Zh. Mat. Fiz. Anal. Geom., 15(4)(2019), 435-447.
    CrossRef
  3. M. Djaa and J. Gancarzewicz, The geometry of tangent bundles of order r, Boletin Academia , Galega de Ciencias, 4(1985), 147-165.
  4. J. Ells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc., 20(5)(1988), 385-524.
    CrossRef
  5. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-160.
    CrossRef
  6. F. Etayo and R. Santamaria, J2 = ±I metric manifolds, Publ. Math. Debrecen, 57(3-4)(2000), 435-444.
    CrossRef
  7. T. Ishihara, Harmonic sections of tangent bundles, J. Math. Tokushima Univ., 13(1979), 23-27.
  8. A. Rezaei-Aghdam and M. Sephid, Complex and biHermitian structures on four dimensional real Lie algebras, J. Phys. A., 43(32)(2010).
    CrossRef
  9. A. A. Salimov, M. Iscan and F. Etayo, Paraholomorphic B-manifold and its properties, Topology Appl., 154(4)(2007), 925-933.
    CrossRef
  10. V. Opriou, Harmonic maps between tangent bundles, Rend. Sem. Mat. Univ. Politec. Torino, 47(1)(1989), 47-55.
  11. K. Yano and S. Ishihara. Tangent and Cotangent Bundles. New York: Marcel Dekker. INC.; 1973.