KYUNGPOOK Math. J. 59(2019), 665-678 https://doi.org/10.5666/KMJ.2019.59.4.665 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

An Ishikawa Iteration Scheme for two Nonlinear Mappings in CAT(0) Spaces

Kritsana Sokhuma

Department of Mathematics, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand

 $e ext{-}mail: k_sokhuma@yahoo.co.th}$

ABSTRACT. We construct an iteration scheme involving a hybrid pair of mappings, one a single-valued asymptotically nonexpansive mapping t and the other a multivalued nonexpansive mapping T, in a complete CAT(0) space. In the process, we remove a restricted condition (called the end-point condition) from results of Akkasriworn and Sokhuma [1] and and use this to prove some convergence theorems. The results concur with analogues for Banach spaces from Uddin et al. [16].

1. Introduction

Fixed point theory in CAT(0) spaces was first studied by Kirk [6, 8] who showed that every nonexpansive mapping defined on a bounded closed convex subset of a complete CAT(0) space always has a fixed point. Since then, the existence problem of fixed point and the \triangle -convergence problem of iterative sequences to a fixed point for nonexpansive mappings and asymptotically nonexpansive mappings in a CAT(0) space have been extensively developed with many papers published.

Let (X,d) be a geodesic metric space. 2^K is denoted as the family of nonempty subsets of K, FB(K) is the collection of all nonempty closed bounded subsets of K and KC(K) is the collection of all nonempty compact convex subsets of K. A subset K of X is called proximinal if for each $x \in X$ there exists an element $k \in K$ such that

$$d(x,k) = \operatorname{dist}(x,K) = \inf\{d(x,y) : y \in K\}.$$

The notation PB(K) is the collection of all nonempty bounded proximinal subsets of K.

Received December 9, 2017; revised December 10, 2018; accepted December 11, 2018. 2010 Mathematics Subject Classification: 47H09, 47H10.

Key words and phrases: Ishikawa iteration, CAT(0) spaces, multivalued mapping, asymptotically nonexpansive mapping.

This work was supported by the Institute for Research and Development, Phranakhon Rajabhat University.

Let H be the Hausdorff metric with respect to d such that

$$H(A,B) = \max\{ \sup_{x \in A} \operatorname{dist}(x,B), \sup_{y \in B} \operatorname{dist}(y,A) \}, \ A,B \in FB(X),$$

where $\operatorname{dist}(x,B) = \inf\{d(x,y) : y \in B\}$ is the distance from the point x to the subset B.

A mapping $t: K \to K$ is said to be nonexpansive if

$$d(tx, ty) \le d(x, y)$$
 for all $x, y \in K$.

A point x is called a fixed point of t if tx = x.

A mapping $t: K \to K$ is called asymptotically nonexpansive if there is a sequence $\{k_n\}$ of positive numbers with the property $\lim_{n \to \infty} k_n = 1$ such that

$$d(t^n x, t^n y) \le k_n d(x, y)$$
 for all $n \ge 1, x, y \in K$.

A multivalued mapping $T: K \to FB(K)$ is said to be nonexpansive if

$$H(Tx, Ty) \le d(x, y)$$
 for all $x, y \in K$.

A multivalued mapping $T: K \to FB(K)$ is said to satisfy condition(E) if there exists $\mu \geq 1$ such that for each $x,y \in K$

$$dist(x, Ty) \le \mu \, dist(x, Tx) + d(x, y).$$

Let $T: K \to PB(K)$ be a multivalued mapping and define the mapping P_T for each x by

$$P_T(x) := \{ y \in Tx : d(x, y) = \text{dist}(x, Tx) \}.$$

A point x is called a fixed point for a multivalued mapping T if $x \in Tx$.

Then, I-T is strongly demiclosed if for every sequence $\{x_n\}$ in K which converges to $x \in K$ and such that $\lim_{n\to\infty} d(x_n, Tx_n) = 0$, then $x \in T(x)$.

For every continuous mapping $T: K \to 2^K$, I-T is strongly demiclosed but the converse is not true. Notice also that if T satisfies condition (E), then I-T is strongly demiclosed.

The notation $\operatorname{Fix}(T)$ stands for the set of fixed points of a mapping T and $\operatorname{Fix}(t) \cap \operatorname{Fix}(T)$ stands for the set of common fixed points of t and T. A precise point x is called a common fixed point of t and T if $x = tx \in Tx$.

In 2009, Laokul and Panyanak [9] defined the iterative and proved the \triangle -convergence for nonexpansive mapping in CAT(0) spaces as follows:

Let C be a nonempty closed convex subset of a complete CAT(0) space and $t:C\to C$ be a nonexpansive mapping with $\mathrm{Fix}(t):=\{x\in C:tx=x\}\neq\emptyset$. Suppose $\{x_n\}$ is generated iteratively by $x_1\in C$,

$$y_n = \beta_n x_n \oplus (1 - \beta_n) x_n,$$

$$x_{n+1} = \alpha_n t y_n \oplus (1 - \alpha_n) x_n.$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in [0, 1] such that one of the following two conditions is satisfied:

- (i) $\alpha_n \in [a, b]$ and $\beta_n \in [0, b]$ for some a, b with $0 < a \le b < 1$,
- (ii) $\alpha_n \in [a, 1]$ and $\beta_n \in [a, b]$ for some a, b with $0 < a \le b < 1$, Then the sequence $\{x_n\}$ is \triangle -convergent to a fixed point of t.

In 2010, Sokhuma and Kaewkhao [15] proved the convergence theorem for a common fixed point in Banach spaces as follows.

Let E be a nonempty compact convex subset of a uniformly convex Banach space X, and $t: E \to E$ and $T: E \to KC(E)$ be a single-valued nonexpansive mapping and a multivalued nonexpansive mapping, respectively. Assume in addition that $\operatorname{Fix}(t) \cap \operatorname{Fix}(T) \neq \emptyset$ and $Tw = \{w\}$ for all $w \in \operatorname{Fix}(t) \cap \operatorname{Fix}(T)$. Suppose $\{x_n\}$ is generated iterative by $x_1 \in E$,

$$y_n = (1 - \beta_n)x_n + \beta_n z_n,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n t y_n,$$

for all $n \in \mathbb{N}$ where $z_n \in Tx_n$ and $\{\alpha_n\}$, $\{\beta_n\}$ are sequences of positive numbers satisfying $0 < a \le \alpha_n, \beta_n \le b < 1$. Then the sequence $\{x_n\}$ converges strongly to a common fixed point of t and T.

In 2013, Sokhuma [14] proved the convergence theorem for a common fixed point in CAT(0) spaces as follows.

Let K be a nonempty compact convex subset of a complete CAT(0) space X and $t: K \to K$ and $T: K \to FC(K)$ a single-valued nonexpansive mapping and a multivalued nonexpansive mapping respectively and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$. Let $\{x_n\}$ is generated iterative by $x_1 \in K$,

$$y_n = (1 - \beta_n)x_n \oplus \beta_n z_n,$$

$$x_{n+1} = (1 - \alpha_n)x_n \oplus \alpha_n t y_n,$$

for all $n \in \mathbb{N}$ where $z_n \in Tx_n$ and $\{\alpha_n\}$, $\{\beta_n\}$ are sequences of positive numbers satisfying $0 < a \le \alpha_n, \beta_n \le b < 1$. Then the sequence $\{x_n\}$ converges strongly to a common fixed point of t and T.

In 2013, Laowang and Panyanak proved the convergence theorem for a common fixed point in CAT(0) spaces as follows.

Theorem 1.1.([10]) Let C be a nonempty bounded closed convex subset of a complete CAT(0) space X. Let $f: C \to C$ be a pointwise asymtotically nonexpansive mapping, and $g: C \to C$ a quasi-nonexpansive mapping, and let $T: C \to KC(C)$ be a multivalued mapping satisfying conditions (E) and C_{λ} for some $\lambda \in (0,1)$. If f, g and T are pairwise commuting, then there exists a point $z \in C$ such that $z = f(z) = g(z) \in T(z)$.

In 2015, Akkasriworn and Sokhuma [1] proved the convergence theorem for a common fixed point in a complete CAT(0) space as follows.

Theorem 1.2. Let E be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t: E \to E$ and $T: E \to FB(E)$ an asymptotically nonexpansive

mapping and a multivalued nonexpansive mapping, respectively. Assume that t and T are commuting and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of the modified Ishikawa iterates defined by

$$y_n = (1 - \beta_n)x_n \oplus \beta_n z_n,$$

$$x_{n+1} = (1 - \alpha_n)x_n \oplus \alpha_n t^n y_n,$$

for all $n \in \mathbb{N}$ where $z_n \in Tt^nx_n$ and $\{\alpha_n\}$, $\{\beta_n\} \in [0,1]$. Then $\{x_n\}$ is \triangle -convergent to a common fixed point of t and T.

In 2016, Uddin and Imdad [17] introduced the following iteration scheme:

Let K be a nonempty closed, bounded and convex subset of Banach space X, let $f: K \to K$ be a single-valued nonexpansive mapping and let $T: K \to FB(K)$ be a multivalued nonexpansive mapping with $Fix(f) \cap Fix(T) \neq \emptyset$ such that P_T is a nonexpansive mapping. The sequence $\{x_n\}$ of the modified Ishikawa iteration is defined by

$$y_n = \alpha_n z_n + (1 - \alpha_n) x_n,$$

$$x_{n+1} = \beta_n f y_n + (1 - \beta_n) x_n,$$

where $x_0 \in K$, $z_n \in P_T(x_n)$ and $0 < a \le \alpha_n$, $\beta_n \le b < 1$. Then $\{x_n\}$ converges strongly to a common fixed point of f and T.

The Ishikawa iteration method was studied with respect to a pair of single-valued asymptotically nonexpansive mapping and a multivalued nonexpansive mapping. It also established the convergence theorem of a sequence from such process in a nonempty bounded closed convex subset of a complete CAT(0) space. A restricted condition (called end-point condition) in Akkasriworn and Sokhuma's results was removed [1].

Here, an iteration method modifying the above was introduced and called the Ishikawa iteration method

Definition 1.3. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t: K \to K$ be a single-valued asymptotically nonexpansive mapping and $T: K \to PB(K)$ be a multivalued nonexpansive mapping where $P_T(x) = \{y \in Tx: d(x,y) = dist(x,Tx)\}$. For fixed $x_1 \in K$ the sequence $\{x_n\}$ of the Ishikawa iteration is defined by

(1.2)
$$y_n = (1 - \beta_n)x_n \oplus \beta_n z_n,$$
$$x_{n+1} = (1 - \alpha_n)x_n \oplus \alpha_n t^n y_n,$$

for all $n \in \mathbb{N}$ where $z_n \in P_T(t^n x_n)$ and $\{\alpha_n\}, \{\beta_n\} \in (0,1)$.

2. Preliminaries

Relevant basic definitions followed previous research results and iterative methods were used frequently.

Let (X,d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ is a map c from a closed interval $[0,s] \subset \mathbb{R}$ to X such that $c(0)=x, \ c(s)=y,$ and d(c(t),c(u))=|t-u| for all $t,u\in[0,s]$. In particular, c is an isometry and d(x,y)=s. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique this geodesic segment is denoted by [x,y]. The space (X,d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x,y\in X$. A subset $Y\subseteq X$ is said to be convex if Y includes every geodesic segment joining any two of its points.

A geodesic triangle $\triangle(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of three points x_1, x_2, x_3 in X (the vertices of \triangle) and a geodesic segment between each pair of vertices (the edges of \triangle). A comparison triangle for the geodesic triangle $\triangle(x_1, x_2, x_3)$ in (X, d) is a triangle $\overline{\triangle}(x_1, x_2, x_3) := \triangle(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ in the Euclidean plane \mathbb{E}^2 such that $d_{\mathbb{E}^2}(\overline{x}_i, \overline{x}_j) = d(x_i, x_j)$ for $i, j \in \{1, 2, 3\}$.

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following comparison axiom.

CAT(0): Let \triangle be a geodesic triangle in X and let $\overline{\triangle}$ be a comparison triangle for \triangle . Then \triangle is said to satisfy the CAT(0) inequality if for all $x, y \in \triangle$ and all comparison points $\overline{x}, \overline{y} \in \overline{\triangle}$, $d(x, y) \leq d_{\mathbb{Z}^2}(\overline{x}, \overline{y})$.

If x, y_1, y_2 are points in a CAT(0) space and

$$y_0 = \frac{1}{2}y_1 \oplus \frac{1}{2}y_2,$$

then the CAT(0) inequality implies that

(2.1)
$$d(x,y_0)^2 \le \frac{1}{2}d(x,y_1)^2 + \frac{1}{2}d(x,y_2)^2 - \frac{1}{4}d(y_1,y_2)^2.$$

This is the (CN) inequality of Bruhat and Tits [3]. A geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality [2].

The following results and methods deal with the concept of asymptotic centres. Let K be a nonempty closed convex subset of a CAT(0) space X and $\{x_n\}$ be a bounded sequence in X. For $x \in X$, define the asymptotic radius of $\{x_n\}$ at x as the number

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x_n, x).$$

Let

$$r \equiv r(K, \{x_n\}) := \inf \{r(x, \{x_n\}) : x \in K\}$$

and

$$A \equiv A(K, \{x_n\}) := \{x \in K : r(x, \{x_n\}) = r\}.$$

The number r and the set A are called the asymptotic radius and asymptotic centre of $\{x_n\}$ relative to K respectively.

If X is a complete CAT(0) space and K is a closed convex subset of X, then $A(K, \{x_n\})$ consists of exactly one point. A sequence $\{x_n\}$ in CAT(0) space X is said to be \triangle -convergent to $x \in X$ if x is the unique asymptotic centre of every subsequence of $\{x_n\}$. A bounded sequence $\{x_n\}$ is said to be regular with respect to K if for every subsequence $\{x_n'\}$, we get

$$r(K, \{x_n\}) = r(K, \{x'_n\}).$$

The definition of \triangle -convergence is presented below.

Definition 2.1.([12, 8]) A sequence $\{x_n\}$ in a CAT(0) space X is said to be \triangle -convergent to $x \in X$ if x is the unique asymptotic centre of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case, $\triangle - \lim_{n \to \infty} x_n = x$ and x is the \triangle -limit of $\{x_n\}$.

Some elementary facts about CAT(0) spaces which will be used in the proofs of the main results are stated. The following lemma can be found in [4, 5, 8].

Lemma 2.2.([8]) Every bounded sequence in a complete CAT(0) space has a \triangle -convergent subsequence.

Lemma 2.3.([4]) If K is a closed convex subset of a complete CAT(0) space and $\{x_n\}$ is a bounded sequence in K, then the asymptotic centre of $\{x_n\}$ is in K.

Lemma 2.4.([5]) Let (X, d) be a CAT(0) space.

(i) For $x, y \in X$ and $u \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that

(2.2)
$$d(x,z) = ud(x,y)$$
 and $d(y,z) = (1-u)d(x,y)$.

he notation $(1-u)x \oplus ty$ is used for the unique point z satisfying (2.2).

(ii) For $x, y, z \in X$ and $u \in [0, 1]$,

$$d((1-u)x \oplus uy, z) \le (1-u)d(x, z) + ud(y, z).$$

The existence of fixed points for asymptotically nonexpansive mappings in CAT(0) spaces was proved by Kirk [7] as the following result.

Theorem 2.5. Let K be a nonempty bounded closed and convex subset of a complete CAT(0) space X and let $t: K \to K$ be asymptotically nonexpansive. Then t has a fixed point.

Theorem 2.6.([13]) Let X be a complete CAT(0) space and K be a nonempty bounded closed and convex subset of X and $t: K \to K$ be an asymptotically nonexpansive mapping. Then I - t is demiclosed at 0.

Corollary 2.7.([5]) Let K be a closed and convex subset of a complete CAT(0) space X and let $t: K \to X$ be an asymptotically nonexpansive mapping. Let $\{x_n\}$ be a bounded sequence in K such that $\lim_{n\to\infty} d(tx_n, x_n) = 0$ and $\Delta - \lim_{n\to\infty} x_n = w$. Then tw = w.

Lemma 2.8.([11]) Let X be a complete CAT(0) space and let $x \in X$. Suppose $\{\alpha_n\}$ is a sequence in [a,b] for some $a,b \in (0,1)$ and $\{x_n\},\{y_n\}$ are sequences in X such that $\limsup_{n\to\infty} d(x_n,x) \leq r$, $\limsup_{n\to\infty} d(y_n,x) \leq r$, and $\lim_{n\to\infty} d((1-\alpha_n)x_n \oplus \alpha_n y_n,x) = r$ for some $r \geq 0$. Then $\lim_{n\to\infty} d(x_n,y_n) = 0$.

The following fact is well-known.

Lemma 2.9. Let X be a CAT(0) space, K be a nonempty compact convex subset of X and $\{x_n\}$ be a sequence in K. Then,

$$dist(y, Ty) \le d(y, x_n) + dist(x_n, Tx_n) + H(Tx_n, Ty)$$

where $y \in K$ and T be a multivalued mapping from K in to FB(K).

The important property can be found in [18].

Lemma 2.10. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of nonnegative numbers such that

$$a_{n+1} \le (1 + b_n)a_n,$$

for all $n \ge 1$. If $\sum_{n=1}^{\infty} b_n$ converges, then $\lim_{n \to \infty} a_n$ exists. In particular, if there is a subsequence of $\{a_n\}$ which converges to 0 then $\lim_{n \to \infty} a_n = 0$.

3. Main Results

The following lemmas play very important roles in this section.

Lemma 3.1. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $T: K \to PB(K)$ be a multivalued mapping, and $P_T(x) = \{y \in Tx : d(x,y) = dist(x,Tx)\}$. Then the following are equivalent

- (1) $x \in Fix(T)$, that is $x \in Tx$;
- (2) $P_T(x) = \{x\}$, that is x = y for each $y \in P_T(x)$:
- (3) $x \in Fix(P_T)$, that is $x \in P_T(x)$.

Further, $Fix(T) = Fix(P_T)$.

Proof. (1) implies (2). Since $x \in Tx$, then d(x,Tx) = 0. Therefore, for any $y \in P_T(x)$, d(x,y) = dist(x,Tx) = 0 and so x = y. That is, $P_T(x) = \{x\}$.

- (2) implies (3). Since $P_T(x) = \{x\}$, then $x \in Fix(P_T)$ and hence $x \in P_T(x)$.
- (3) implies (1). Since $x \in Fix(P_T)$, then $x \in P_T(x)$. Therefore, d(x,x) =

 $\operatorname{dist}(x,Tx)=0$ and so $x\in Tx$ by the closedness of Tx. This implies that $\operatorname{Fix}(T)=\operatorname{Fix}(P_T)$.

Lemma 3.2. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t: K \to K$ and $T: K \to PB(K)$ a single-valued asymptotically nonexpansive mapping and a multivalued nonexpansive mapping respectively with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1.2). Then $\lim_{n \to \infty} d(x_n, w)$ exists for all $w \in Fix(t) \cap Fix(T)$.

Proof. Let $x_1 \in K$ and $w \in Fix(t) \cap Fix(T)$, in the view of Lemma 3.1, $w \in P_T(w) = \{w\}$. Now consider,

$$\begin{split} d(x_{n+1},w) &= d((1-\alpha_n)x_n \oplus \alpha_n t^n y_n, w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n d(t^n y_n, t^n w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n d(y_n,w) \\ &= (1-\alpha_n)d(x_n,w) + \alpha_n k_n d((1-\beta_n)x_n \oplus \beta_n z_n, w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n d(z_n,w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n dist(z_n, P_T(w)) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n H(P_T(t^n x_n), P_T(w)) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n d(t^n x_n,w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n d(t^n x_n,w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n \beta_n k_n^2 d(x_n,w) \\ &= [1+\alpha_n(k_n-1) + \alpha_n \beta_n k_n(k_n-1)]d(x_n,w). \end{split}$$

By the convergence of k_n and α_n , $\beta_n \in (0,1)$, there exists some M>0 such that

$$d(x_{n+1}, w) \le [1 + M(k_n - 1)]d(x_n, w).$$

By condition $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and Lemma 2.10, which implies that $\lim_{n \to \infty} d(x_n, w)$ exists.

Lemma 3.3. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t: K \to K$ and $T: K \to PB(K)$ a single-valued asymptotically nonexpansive mapping and a multivalued nonexpansive mapping respectively with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1.2). Then $\lim_{n \to \infty} d(t^n y_n, x_n) = 0$. Proof. Let $x_1 \in K$ and $w \in Fix(t) \cap Fix(T)$, in view of Lemma 3.1, $w \in P_T(w) = \{w\}$. From Lemma 3.2, $\lim_{n \to \infty} d(x_n, w) = c$ is set. Now consider,

$$d(y_{n}, w) = d((1 - \beta_{n})x_{n} \oplus \beta_{n}z_{n}, w)$$

$$\leq (1 - \beta_{n})d(x_{n}, w) + \beta_{n}d(z_{n}, w)$$

$$= (1 - \beta_{n})d(x_{n}, w) + \beta_{n}dist(z_{n}, P_{T}(w))$$

$$\leq (1 - \beta_{n})d(x_{n}, w) + \beta_{n}H(P_{T}(t^{n}x_{n}), P_{T}(w))$$

$$\leq (1 - \beta_{n})d(x_{n}, w) + \beta_{n}d(t^{n}x_{n}, w)$$

$$\leq (1 - \beta_{n})d(x_{n}, w) + \beta_{n}k_{n}d(x_{n}, w).$$

Notice that

$$d(t^{n}y_{n}, w) \leq k_{n}d(y_{n}, w)$$

$$\leq k_{n}[(1 - \beta_{n})d(x_{n}, w) + \beta_{n}k_{n}d(x_{n}, w)]$$

$$= k_{n}(1 - \beta_{n})d(x_{n}, w) + \beta_{n}k_{n}^{2}d(x_{n}, w)$$

$$= (k_{n} - k_{n}\beta_{n} + \beta_{n}k_{n}^{2})d(x_{n}, w)$$

$$= [k_{n} + \beta_{n}k_{n}(k_{n} - 1)]d(x_{n}, w)$$

$$\leq [1 + \beta_{n}k_{n}(k_{n} - 1)]d(x_{n}, w).$$

Then,

$$\limsup_{n \to \infty} d(t^n y_n, w) \le \limsup_{n \to \infty} k_n d(y_n, w) \le \limsup_{n \to \infty} [1 + \beta_n k_n (k_n - 1)] d(x_n, w).$$

By $k_n \to 1$ as $n \to \infty$ and $\alpha_n, \beta_n \in (0, 1)$, which implies that

$$\limsup_{n \to \infty} d(t^n y_n, w) \le \limsup_{n \to \infty} d(y_n, w) \le \limsup_{n \to \infty} d(x_n, w) = c.$$

Since
$$c = \lim_{n \to \infty} d(x_{n+1}, w) = \lim_{n \to \infty} d((1 - \alpha_n)x_n \oplus \alpha_n t^n y_n, w)$$
, it implies by Lemma 2.8 that $\lim_{n \to \infty} d(t^n y_n, x_n) = 0$.

Lemma 3.4. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t: K \to K$ and $T: K \to PB(K)$ a single-valued asymptotically nonexpansive mapping and a multivalued nonexpansive mapping respectively with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1.2). Then $\lim_{n \to \infty} d(x_n, z_n) = 0$.

Proof. Let $x_1 \in K$ and $w \in Fix(t) \cap Fix(T)$, in view of Lemma 3.1, $w \in P_T(w) = \{w\}$. Consider,

$$d(x_{n+1}, w) = d((1 - \alpha_n)x_n \oplus \alpha_n t^n y_n, w)$$

$$\leq (1 - \alpha_n)d(x_n, w) + \alpha_n d(t^n y_n, w)$$

$$\leq (1 - \alpha_n)d(x_n, w) + \alpha_n k_n d(y_n, w)$$

and hence

$$\frac{d(x_{n+1}, w) - d(x_n, w)}{\alpha_n} \le k_n d(y_n, w) - d(x_n, w).$$

Therefore, by $0 < a \le \alpha_n \le b < 1$, it follows that

$$\left(\frac{d(x_{n+1}, w) - d(x_n, w)}{\alpha_n}\right) + d(x_n, w) \le k_n d(y_n, w).$$

Thus,

$$\liminf_{n \to \infty} \left\{ \left(\frac{d(x_{n+1}, w) - d(x_n, w)}{\alpha_n} \right) + d(x_n, w) \right\} \le \liminf_{n \to \infty} k_n d(y_n, w).$$

It follows that

$$c \leq \liminf_{n \to \infty} d(y_n, w).$$

Since $\limsup_{n\to\infty} d(y_n, w) \leq c$, it follows that

$$c = \lim_{n \to \infty} d(y_n, w) = \lim_{n \to \infty} d((1 - \beta_n)x_n \oplus \beta_n z_n, w).$$

Recall that

$$d(z_n, w) = \text{dist}(z_n, P_T(w)) \le H(P_T(t^n x_n), P_T(w)) \le d(t^n x_n, w) \le k_n d(x_n, w).$$

Hence,

$$\limsup_{n\to\infty} d(z_n,w) \le \limsup_{n\to\infty} k_n d(x_n,w) \le \limsup_{n\to\infty} d(x_n,w) = c.$$

Thus,

$$\lim_{n \to \infty} d(x_n, z_n) = 0.$$

Lemma 3.5. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t: K \to K$ and $T: K \to PB(K)$ a single-valued asymptotically nonexpansive mapping and a multivalued nonexpansive mapping respectively with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1.2). Then $\lim_{n \to \infty} d(t^n x_n, x_n) = 0$. Proof. Consider,

$$d(t^{n}x_{n}, x_{n}) \leq d(t^{n}x_{n}, t^{n}y_{n}) + d(t^{n}y_{n}, x_{n})$$

$$\leq k_{n}d(x_{n}, y_{n}) + d(t^{n}y_{n}, x_{n})$$

$$= k_{n}d(x_{n}, (1 - \beta_{n})x_{n} \oplus \beta_{n}z_{n}) + d(t^{n}y_{n}, x_{n})$$

$$\leq k_{n}[(1 - \beta_{n})d(x_{n}, x_{n}) + \beta_{n}d(x_{n}, z_{n})] + d(t^{n}y_{n}, x_{n})$$

$$= k_{n}\beta_{n}d(x_{n}, z_{n}) + d(t^{n}y_{n}, x_{n}).$$

Then,

$$\lim_{n \to \infty} d(t^n x_n, x_n) \le \lim_{n \to \infty} k_n \beta_n d(z_n, x_n) + \lim_{n \to \infty} d(t^n y_n, x_n).$$

Hence, by Lemmas 3.3 and 3.4, $\lim_{n\to\infty} d(t^n x_n, x_n) = 0$.

Lemma 3.6. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t: K \to K$ and $T: K \to PB(K)$ a single-valued asymptotically nonexpansive mapping and a multivalued nonexpansive mapping respectively with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1.2). Then $\lim_{n \to \infty} d(tx_n, x_n) = 0$.

Proof. Consider,

$$d(tx_{n}, x_{n}) = d(x_{n}, tx_{n})$$

$$\leq d(x_{n}, t^{n}x_{n}) + d(t^{n}x_{n}, tx_{n})$$

$$\leq d(x_{n}, t^{n}x_{n}) + k_{1}[d(t^{n-1}x_{n}, t^{n-1}x_{n-1}) + d(t^{n-1}x_{n-1}, x_{n})]$$

$$\leq d(x_{n}, t^{n}x_{n}) + k_{1}k_{n-1}d(x_{n}, x_{n-1}) + k_{1}d(t^{n-1}x_{n-1}, x_{n})$$

$$\leq d(x_{n}, t^{n}x_{n}) + k_{1}k_{n-1}\alpha_{n-1}d(t^{n-1}y_{n-1}, x_{n-1})$$

$$+ k_{1}(1 - \alpha_{n-1})d(x_{n-1}, t^{n-1}x_{n-1}) + k_{1}k_{n-1}\alpha_{n-1}d(y_{n-1}, x_{n-1})$$

$$\leq d(x_{n}, t^{n}x_{n}) + k_{1}k_{n-1}\alpha_{n-1}d(t^{n-1}y_{n-1}, x_{n-1})$$

$$+ k_{1}(1 - \alpha_{n-1})d(x_{n-1}, t^{n-1}x_{n-1}) + k_{1}k_{n-1}\alpha_{n-1}\beta_{n-1}d(z_{n-1}, x_{n-1}).$$

It follows from Lemmas 3.2 – 3.4 that,

$$\lim_{n \to \infty} d(tx_n, x_n) = 0.$$

Theorem 3.7. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t: K \to K$ and $T: K \to PB(K)$ a single-valued asymptotically nonexpansive mapping and a multivalued nonexpansive mapping respectively with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1.2). Then $\{x_n\}$ is \triangle -convergent to y implies $y \in Fix(t) \cap Fix(T)$.

Proof. Since $\{x_n\}$ is \triangle -convergent to y. From Lemma 3.6,

$$\lim_{n \to \infty} d(tx_n, x_n) = 0.$$

By Corollary 1.6, $y \in K$ and ty = y, it follows that $y \in Fix(t)$. It follows from Lemma 2.9 that,

$$dist(y, P_T(y)) \le d(y, x_n) + dist(x_n, P_T(x_n)) + H(P_T(x_n), P_T(y))$$

 $\le d(y, x_n) + d(x_n, z_n) + d(x_n, y) \to 0 \text{ as } n \to \infty.$

It follows that $y \in Fix(P_T)$ then $y \in Fix(T)$. Therefore $y \in Fix(t) \cap Fix(T)$ as desired.

Theorem 3.8. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t: K \to K$ and $T: K \to PB(K)$ a single-valued asymptotically nonexpansive mapping and a multivalued nonexpansive mapping respectively with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1.2). Then $\{x_n\}$ is \triangle -convergent to a common fixed point of t and T.

Proof. Since Lemma 3.6 guarantees that $\{x_n\}$ is bounded and $\lim_{n\to\infty} d(tx_n,x_n)=0$. So, let $\omega_w(x_n):=\cup A(\{u_n\})$ where the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$. If $\omega_w(x_n)\subset \operatorname{Fix}(t)\cap\operatorname{Fix}(T)$, then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\})=\{u\}$. By Lemmas 1.2 and 1.3 there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\Delta-\lim_{n\to\infty}v_n=v\in K$. Since $\lim_{n\to\infty}d(tv_n,v_n)=0$, it follows that $v\in\operatorname{Fix}(t)$. Since,

$$dist(v, P_T(v)) \le dist(v, P_T(v_n)) + H(P_T(v_n), P_T(v))$$

$$\le d(v, z_n) + d(v_n, v)$$

$$\le d(v, v_n) + d(v_n, z_n) + d(v_n, v) \to 0 \text{ as } n \to \infty.$$

It follows that $v \in \operatorname{Fix}(P_T)$ and $v \in \operatorname{Fix}(T)$ by Lemma 3.1. Therefore $v \in \operatorname{Fix}(t) \cap \operatorname{Fix}(T)$ as desired. Suppose that $u \neq v$, since t is a single-valued asymptotically nonexpansive mapping and $v \in \operatorname{Fix}(t) \cap \operatorname{Fix}(T)$, $\lim_{n \to \infty} d(x_n, v)$ exists by Lemma 3.2. Then by the uniqueness of asymptotic centres,

$$\limsup_{n \to \infty} d(v_n, v) < \limsup_{n \to \infty} d(v_n, u)$$

$$\leq \limsup_{n \to \infty} d(u_n, u)$$

$$< \limsup_{n \to \infty} d(u_n, v)$$

$$= \limsup_{n \to \infty} d(x_n, v)$$

$$= \limsup_{n \to \infty} d(v_n, v)$$

a contradiction, and hence $u = v \in Fix(t) \cap Fix(T)$.

To show that $\{x_n\}$ is \triangle -convergent to a common fixed point of t and T, it suffices to show that $\omega_w(x_n)$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_n\}$. By Lemmas 1.2 and 1.3 there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\triangle - \lim_{n \to \infty} v_n = v \in K$. Let $A(\{u_n\}) = \{u\}$ and $A(\{x_n\}) = \{x\}$. It has seen that u = v and $v \in \operatorname{Fix}(t) \cap \operatorname{Fix}(T)$.

It can complete the proof by showing that x = v. Suppose not, since

 $\lim_{n\to\infty} d(x_n, v)$ exists, then by the uniqueness of asymptotic centres,

$$\begin{split} \limsup_{n \to \infty} d(v_n, v) &< \limsup_{n \to \infty} d(v_n, x) \\ &\leq \limsup_{n \to \infty} d(x_n, x) \\ &< \limsup_{n \to \infty} d(x_n, v) \\ &= \limsup_{n \to \infty} d(v_n, v) \end{split}$$

a contradiction, and hence the conclusion follows.

Acknowledgements. I would like to thank the Institute for Research and Development, Phranakhon Rajabhat University, for financial support.

References

- [1] N. Akkasriworn and K. Sokhuma, Convergence theorems for a pair of asymptotically and multivalued nonexpansive mapping in CAT(0) spaces, Commun. Korean Math. Soc., 30(3)(2015), 177–189.
- [2] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
- [3] F. Bruhat and J. Tits, *Groupes reductifs sur un corps local*, Inst. Hautes Etudes Sci. Publ. Math., **41**(1972), 5–251.
- [4] S. Dhompongsa, W. A. Kirk and B. Panyanak. Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal., 8(2007), 35–45.
- [5] S. Dhompongsa, W. A. Kirk and B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Anal., 65(2006), 762–772.
- [6] W. A. Kirk, Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis(Malaga/Seville, 2002/2003), 195–225, Colecc. Abierta 64, Univ. Sevilla Secr. Publ., Seville, 2003.
- [7] W. A. Kirk, Geodesic geometry and fixed point theory II, International Conference on Fixed Point Theory and Applications, 113—142, Yokohama Publ., Yokohama, 2004.
- [8] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68(2008), 3689–3696.
- [9] T. Laokul and B. Panyanak, Approximating fixed points of nonexpansive mappings in CAT(0) spaces, Int. J. Math. Anal., $\underline{3}(2009)$, 1305-1315.
- [10] W. Laowang and B. Panyanak, A note on common fixed point results in uniformly convex hyperbolic spaces, J. Math., (2013), Art. ID 503731, 5 pp.
- [11] W. Laowang and B. Panyanak, Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces, Fixed Point Theory Appl., (2010), Art. ID 367274, 11 pp.

- [12] T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60(1976), 179–182.
- [13] B. Nanjaras and B. Panyanak, Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., (2010), Art. ID 268780, 14 pp.
- [14] K. Sokhuma, Δ-convergence Theorems for a pair of single valued and multivalued nonexpansive mappings in CAT(0) spaces, J. Math. Anal., 4(2013), 23–31.
- [15] K. Sokhuma and A. Kaewkhao, Ishikawa iterative process for a pair of single-valued and multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., (2010), Art. ID 618767, 9 pp.
- [16] I. Uddin, A. A. Abdou and M. Imdad, A new iteration scheme for a hybrid pair of generalized nonexpansive mappings, Fixed Point Theory Appl., (2014), 2014:205, 13 pp.
- [17] I. Uddin and M. Imdad, A new iteration scheme for a hybrid pair of nonexpansive mappings, Honam Math. J., **38(1)**(2016), 127–139.
- [18] H. Zhou, R. P. Agarwal, Y. J. Cho and Y. S. Kim, Nonexpansive mappings and iterative methods in uniformly convex Banach spaces, Georgian Math. J., 9(2002). 591—600.