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ABSTRACT. We construct an iteration scheme involving a hybrid pair of mappings, one a
single-valued asymptotically nonexpansive mapping t and the other a multivalued nonex-
pansive mapping 7', in a complete CAT(0) space. In the process, we remove a restricted
condition (called the end-point condition) from results of Akkasriworn and Sokhuma [1]
and and use this to prove some convergence theorems. The results concur with analogues
for Banach spaces from Uddin et al. [16].

1. Introduction

Fixed point theory in CAT(0) spaces was first studied by Kirk [6, 8] who showed
that every nonexpansive mapping defined on a bounded closed convex subset of a
complete CAT(0) space always has a fixed point. Since then, the existence problem
of fixed point and the A—convergence problem of iterative sequences to a fixed
point for nonexpansive mappings and asymptotically nonexpansive mappings in a
CAT(0) space have been extensively developed with many papers published.

Let (X, d) be a geodesic metric space. 2% is denoted as the family of nonempty
subsets of K, FB(K) is the collection of all nonempty closed bounded subsets of
K and KC(K) is the collection of all nonempty compact convex subsets of K. A
subset K of X is called proximinal if for each x € X there exists an element k € K
such that

d(z, k) = dist(z, K) = inf{d(z,y) : y € K}.

The notation PB(K) is the collection of all nonempty bounded proximinal
subsets of K.
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Let H be the Hausdorff metric with respect to d such that

H(A, B) = max{ sup dist(z, B), supdist(y,A4) }, A, B € FB(X),

€A yeB

where dist(x, B) = inf{d(z,y) : y € B} is the distance from the point z to the
subset B.
A mapping t : K — K is said to be nonexpansive if

d(tz,ty) < d(x,y) for all z,y € K.

A point z is called a fixed point of ¢ if tz = .
A mapping t : K — K is called asymptotically nonexpansive if there is a
sequence {k,} of positive numbers with the property lim k, = 1 such that
n—oo

d(t"z,t"y) < kpd(z,y) foralln > 1,2,y € K.
A multivalued mapping T : K — FB(K) is said to be nonexpansive if
H(Tz,Ty) < d(z,y) for all z,y € K.

A multivalued mapping T : K — FB(K) is said to satisfy condition(FE) if there
exists p > 1 such that for each z,y € K

dist(x, Ty) < pdist(z, Tz) + d(z, y).

Let T: K — PB(K) be a multivalued mapping and define the mapping Pr for
each z by
Pr(z):={y € Tz : d(z,y) = dist(z,Tz)}.

A point z is called a fixed point for a multivalued mapping T' if x € Tz.

Then, I — T is strongly demiclosed if for every sequence {z,} in K which
converges to x € K and such that lim, o d(zn, T2,) = 0, then z € T(z).

For every continuous mapping 7' : K — 2%, I — T is strongly demiclosed but
the converse is not true. Notice also that if T satisfies condition (E), then I — T is
strongly demiclosed.

The notation Fix(T') stands for the set of fixed points of a mapping T and
Fix(t) N Fix(T') stands for the set of common fixed points of ¢ and T. A precise
point z is called a common fixed point of t and T if x = tx € Tx.

In 2009, Laokul and Panyanak [9] defined the iterative and proved the
A—convergence for nonexpansive mapping in CAT(0) spaces as follows:

Let C be a nonempty closed convex subset of a complete CAT(0) space and
t : C — C be a nonexpansive mapping with Fix(¢) := {z € C : ta = z} # 0.
Suppose {x,} is generated iteratively by x; € C,

Yn = BrnTn @ (1 - ﬂn)xna
Tl = Qntyn ® (1 — ap)Tp.



Ishikawa Iteration Scheme for two Nonlinear Mappings

for all n € N, where {a,,} and {3, } are real sequences in [0, 1] such that one of the
following two conditions is satisfied:

(1) o € [a,b] and By, € [0,b] for some a,b with 0 < a <b< 1,

(ii) ayp, € [a,1] and B, € [a,b] for some a,b with 0 < a < b < 1,

Then the sequence {z,} is A—convergent to a fixed point of ¢.

In 2010, Sokhuma and Kaewkhao [15] proved the convergence theorem for a
common fixed point in Banach spaces as follows.

Let FE be a nonempty compact convex subset of a uniformly convex Banach space
X,andt: E — Eand T : E — KC(FE) be a single-valued nonexpansive mapping
and a multivalued nonexpansive mapping, respectively. Assume in addition that
Fix(t) NFix(T) # 0 and Tw = {w} for all w € Fix(¢) N Fix(T). Suppose {z,} is
generated iterative by x1 € F,

Yn = (1 - 6n)xn + anna

Tn+1 = (1 - O‘n)xn + e tyn,

for all n € N where z,, € Tz, and {«a,}, {B.} are sequences of positive numbers
satisfying 0 < a < ay,, B, < b < 1. Then the sequence {z,,} converges strongly to a
common fixed point of ¢ and T.

In 2013, Sokhuma [14] proved the convergence theorem for a common fixed
point in CAT(0) spaces as follows.

Let K be a nonempty compact convex subset of a complete CAT(0) space X
andt: K - K and T : K — FC(K) a single-valued nonexpansive mapping and a
multivalued nonexpansive mapping respectively and Fix(t) N Fix(T') # 0 satisfying
Tw = {w} for all w € Fix(t) NFix(T). Let {x,} is generated iterative by z; € K,

Yn = (1 - ﬁn)mn 2 ﬁnznu
Tnt1 = (1 — ap)z, ® antyny,

for all n € N where z, € Tz, and {«,}, {8n} are sequences of positive numbers
satisfying 0 < a < ay,, 8, < b < 1. Then the sequence {z,} converges strongly to a
common fixed point of ¢ and T.

In 2013, Laowang and Panyanak proved the convergence theorem for a common
fixed point in CAT(0) spaces as follows.

Theorem 1.1.([10]) Let C be a nonempty bounded closed convexr subset of a com-
plete CAT(0) space X. Let f : C — C be a pointwise asymiotically nonexpansive
mapping, and g : C — C a quasi-nonexpansive mapping, and let T : C — KC(C)
be a multivalued mapping satisfying conditions (E) and Cy for some A € (0,1).
If f,g and T are pairwise commuting, then there exists a point z € C such that

2= f(2) = g(2) € T(2).
In 2015, Akkasriworn and Sokhuma [1] proved the convergence theorem for a
common fixed point in a complete CAT(0) space as follows.

Theorem 1.2. Let E be a nonempty bounded closed convex subset of a complete
CAT(0) space X, t: E — E and T : E — FB(E) an asymptotically nonexpansive
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mapping and a multivalued nonexpansive mapping, respectively. Assume that t and
T are commuting and Fiz(t) N Fiz(T) # 0 satisfying Tw = {w} for all w € Fiz(t) N

Fig(T) and > (k, —1) < co. Let {z,} be the sequence of the modified Ishikawa
n=1
iterates defined by

Yn = (1 - /Bn)xn ® Bnzn,
Tn4+1 = (1 - an)xn ® antnyn;

for all n € N where z, € Tt"z, and {an,}, {B.} € [0,1]. Then {x,} is
A—convergent to a common fized point of t and T .

In 2016, Uddin and Imdad [17] introduced the following iteration scheme:

Let K be a nonempty closed, bounded and convex subset of Banach space X,
let f: K — K be a single-valued nonexpansive mapping and let T': K — FB(K)
be a multivalued nonexpansive mapping with Fix(f) N Fix(T) # 0 such that Pr is
a nonexpansive mapping. The sequence {z,} of the modified Ishikawa iteration is
defined by

Yn = Qp2n + (1 - Oén)l’n,
Tn1 = Brnfyn + (1 - /Bn)xnv

where zg € K, z, € Pr(z,) and 0 < a < g, B, < b < 1. Then {z,} converges
strongly to a common fixed point of f and 7.

The Ishikawa iteration method was studied with respect to a pair of single-
valued asymptotically nonexpansive mapping and a multivalued nonexpansive map-
ping. It also established the convergence theorem of a sequence from such process in
a nonempty bounded closed convex subset of a complete CAT(0) space. A restricted
condition (called end-point condition) in Akkasriworn and Sokhuma’s results was
removed [1].

Here, an iteration method modifying the above was introduced and called the
Ishikawa iteration method

Definition 1.3. Let K be a nonempty bounded closed convex subset of a com-
plete CAT(0) space X, ¢t : K — K be a single-valued asymptotically nonexpansive
mapping and T : K — PB(K) be a multivalued nonexpansive mapping where
Pr(z) ={y € Tx : d(z,y) = dist(x,Tz)}. For fixed 1 € K the sequence {z,} of
the Ishikawa iteration is defined by

Yn = (1 - Bn)xn 2] ﬂnzny
(1.2) Tnt1 = (1 — ap)zn ® ant™yn,

for all n € N where z,, € Pr(t"z,) and {a,}, {8} € (0,1).
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2. Preliminaries

Relevant basic definitions followed previous research results and iterative meth-
ods were used frequently.

Let (X,d) be a metric space. A geodesic path joining x € X to y € X is
a map ¢ from a closed interval [0,s] C R to X such that ¢(0) = z, ¢(s) = v,
and d(c(t),c(u)) = |t — u| for all t,u € [0,s]. In particular, ¢ is an isometry and
d(x,y) = s. The image « of ¢ is called a geodesic (or metric) segment joining = and
y. When it is unique this geodesic segment is denoted by [z, y]. The space (X, d) is
said to be a geodesic space if every two points of X are joined by a geodesic, and
X is said to be uniquely geodesic if there is exactly one geodesic joining z and y
for each z,y € X. A subset Y C X is said to be convex if Y includes every geodesic
segment joining any two of its points.

A geodesic triangle A(x1,z9,23) in a geodesic metric space (X, d) consists of
three points x1, x9, x3 in X (the vertices of A) and a geodesic segment between each
pair of vertices (the edges of A). A comparison triangle for the geodesic triangle
A(z1,29,73) in (X, d) is a triangle A(xy, 22, 23) := A(T1, T, T3) in the Euclidean
plane E? such that dg2(%;,7;) = d(z;, x;) for i,j € {1,2,3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appro-
priate size satisfy the following comparison axiom.

CAT(0): Let A be a geodesic triangle in X and let A be a comparison triangle
for A. Then A is said to satisfy the CAT(0) inequality if for all z,y € A and all
comparison points 7,y € A, d(x,y) < dg2(T, 7).

If x,y1,y2 are points in a CAT(0) space and

1 1

Yo = 5?/1 3] 52/27

then the CAT(0) inequality implies that

(2.1) d(z, y0)* < %d(%yl)Q + %d(%y2)2 - %d(yhyz)g-

This is the (CN) inequality of Bruhat and Tits [3]. A geodesic space is a CAT(0)
space if and only if it satisfies the (CN) inequality [2].

The following results and methods deal with the concept of asymptotic centres.
Let K be a nonempty closed convex subset of a CAT(0) space X and {z,} be a
bounded sequence in X. For € X, define the asymptotic radius of {z,} at = as
the number

r(z,{z,}) = limsupd(z,, ).
n—oo

Let
r=r(K,{z,}) = inf {r(z,{z,}) 1z € K}

and
A= AK,{zn}) ={r e K:r(z,{z,})=7r}.
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The number r and the set A are called the asymptotic radius and asymptotic
centre of {x,} relative to K respectively.

If X is a complete CAT(0) space and K is a closed convex subset of X, then
A(K,{zn}) consists of exactly one point. A sequence {z,} in CAT(0) space X is
said to be A—convergent to x € X if x is the unique asymptotic centre of every
subsequence of {z,}. A bounded sequence {z,} is said to be regular with respect
to K if for every subsequence {z }, we get

T(K7 {xn}) = T(K, {CC%})
The definition of A—convergence is presented below.

Definition 2.1.([12, 8]) A sequence {z,} in a CAT(0) space X is said to be
A—convergent to x € X if x is the unique asymptotic centre of {u,} for every
subsequence {u,} of {xn}. In this case, A — lim x, = x and x is the /\ — limit of

n— 00

Some elementary facts about CAT(0) spaces which will be used in the proofs of
the main results are stated. The following lemma can be found in [4, 5, §].

Lemma 2.2.([8]) Every bounded sequence in a complete CAT(0) space has a
A—convergent subsequence.

Lemma 2.3.([4]) If K is a closed convex subset of a complete CAT(0) space and
{z,} is a bounded sequence in K, then the asymptotic centre of {x,} is in K.

Lemma 2.4.([5]) Let (X,d) be a CAT(0) space.

(i) Forz,y € X and u € [0,1], there exists a unique point z € [z, y] such that
(2.2) d(z,z) = ud(z,y) and d(y,z) = (1 —u)d(z,y).

he notation (1 —u)x @ ty is used for the unique point z satisfying (2.2).
(ii) For z,y,z € X and u € [0,1],

d((1 —wzduy,z) < (1—wu)d(z,z) + ud(y, 2).

The existence of fixed points for asymptotically nonexpansive mappings in
CAT(0) spaces was proved by Kirk [7] as the following result.

Theorem 2.5. Let K be a nonempty bounded closed and convex subset of a complete
CAT(0) space X and lett: K — K be asymptotically nonexpansive. Then t has a
fixed point.

Theorem 2.6.([13]) Let X be a complete CAT(0) space and K be a nonempty
bounded closed and convex subset of X andt: K — K be an asymptotically nonez-
pansive mapping. Then I —t is demiclosed at 0.
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Corollary 2.7.([5]) Let K be a closed and convex subset of a complete CAT(0)
space X and let t : K — X be an asymptotically nonexpansive mapping. Let {x,}

be a bounded sequence in K such that lim d(tz,,z,) =0 and A — lim z, = w.
n— 00 n—o00

Then tw = w.

Lemma 2.8.([11]) Let X be a complete CAT(0) space and let x € X. Suppose {c, }
is a sequence in [a,b] for some a,b € (0,1) and {x,},{yn} are sequences in X such

that lim sup d(x,, x) < r,limsup d(y,,x) < r, and 1i_{n d((1— o) ® anyn,z) =71
n—o0o n—o00 n— 00
for some r > 0. Then lim d(x,,yn) = 0.
n—oo

The following fact is well-known.

Lemma 2.9. Let X be a CAT(0) space, K be a nonempty compact convexr subset
of X and {x,} be a sequence in K. Then,

dist(y, Ty) < d(y, xy) + dist(xn, Txy) + H(Tzp, Ty)

where y € K and T be a multivalued mapping from K in to FB(K).
The important property can be found in [18].

Lemma 2.10. Let {a,} and {b,} be two sequences of nonnegative numbers such
that

An41 S (1 + bn>ana

o0
foralln > 1. If > b, converges, then lim a, exists. In particular, if there is a
n=1 n—oQ

subsequence of {a,} which converges to 0 then lim a, = 0.
n—oo

3. Main Results
The following lemmas play very important roles in this section.

Lemma 3.1. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X, T : K — PB(K) be a multivalued mapping, and Pr(z) =
{y € Tx : d(x,y) = dist(x,Tx)}. Then the following are equivalent

(1) = € Fir(T), that is x € Tx;
(2) Pr(x)={x}, that is x =y for each y € Pr(z);
(3) = € Fiz(Pr), that is x € Pp(x).

Further, Fiz(T) = Fiz(Pr).

Proof. (1) implies (2). Since x € Tz, then d(x,Tx) = 0. Therefore, for any y €
Pr(z), d(z,y) = dist(z, Tx) = 0 and so x = y. That is, Pr(z) = {«}.
(2) implies (3). Since Pr(z) = {z}, then = € Fix(Pr) and hence z € Pp(x).
(3) implies (1). Since z € Fix(Pr), then x € Pr(z). Therefore, d(z,z) =
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dist(z,Tz) = 0 and so x € Tz by the closedness of Tx.
This implies that Fix(T') = Fix(Pr). O

Lemma 3.2. Let K be a nonempty bounded closed convexr subset of a complete
CAT(0) space X, t : K - K and T : K — PB(K) a single-valued asymptotically
nonezrpansive mapping and a multivalued nonexpansive mapping respectively with
Fiz(t) N Fir(T) # O such that Pr is nonexpansive and Y (k, — 1) < co. Let {zp}
n=1
be the sequence of Ishikawa iterates defined by (1.2). Then lim d(x,,w) exists for
n—oo

all w € Fix(t) N Fix(T).

Proof. Let 21 € K and w € Fix(¢t)NFix(T), in the view of Lemma 3.1, w € Pr(w) =
{w}. Now consider,

d(l'n+17w) = d((l —Qp )Ty O ntnynv )

Brnzn, w)
Bn)d(@n, w) + anknBpd(zn, w)
(1 Br)d(xn, w) + apkyBrdist(z,, Pr(w))
d(zp,w) + ank, (1 — Bp)d(xn, w) + anky,BnH(Pr(t"z,,), Pr(w))
kn(1 = Bn)d(zn, w) + ank, Bnd(t" x,, w)
kn(1 = Bp)d(zn, w) + anBrkid(x,, w)
1+ an(kn — 1) + anBrkn(kn — 1)]d(x,, w)
14+ Bnkn)(kn — D]d(zp, w).

— o~~~ o~~~ —~ —
—_ =
[
S Q2
3 3
QU
N N N N N N N N
8 8
3 3
g €
— D D D D D
_|_
Q
3
:
/—\

By the convergence of k,, and «a,, 8, € (0,1), there exists some M > 0 such that

d(xpy1,w) < [14+ M(k, — 1)]d(zn, w).

By condition Z (kn, —1) < 00 and Lemma 2.10, which implies that hm (@, w)

n=1
exists. a

Lemma 3.3. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X, t : K - K and T : K — PB(K) a single-valued asymptotically
nonexpansive mapping and a multivalued nonexpansive mapping respectively with
Fiz(t) N Fin(T) # O such that Pr is nonezpansive and Y. (k, — 1) < oo. Let {z,}

n=1
be the sequence of Ishikawa iterates defined by (1.2). Then lm d(t"y,,z,) = 0.
n—oo

Proof. Let 1 € K and w € Fix(¢t) N Fix(T), in view of Lemma 3.1, w € Pr(w) =
{w}. From Lemma 3.2, lim d(x,,w) = c is set. Now counsider,
n—oo
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d(Yn,w) = d((1 = Bn)Tn © Bnin, w)

< (1= Bn)d(xn, w) + Bnd(zn,w)

= (1 = Bn)d(zn, w) + Bndist(z,, Pr(w))

< (1= Bu)d(@n, w) + B H(Pr(t"ay), Pr(w))

< (1= Bn)d(wp, w) + Bnd(t"zy, w)

< (1= Bn)d(xn, w) + Brknd(zy, w).

Notice that
d(t"Yn, w) < knd(Yn, w)

< kn[(1 = Bn)d(zn, w) + Brknd(zy,, )]
= kn(1 — Bp)d(zn, w) + Buk2d(xy, w)

= (kp — kn B + Brk2)d(z,, w)
= [kn + Brkn(kn — 1)]d(z, w)

<1+ Brkn(k, — 1)]d(zy, w).
Then,

lim sup d(t"yn, w) < limsup k,d(yn, w) < limsup[l + Bnkn(kn — 1)]d(x,, w).

n—o0 n— o0 n—oo

By k, — 1 as n — oo and ay,, 8, € (0, 1), which implies that

lim sup d(t"yn, w) < limsup d(y,,w) < limsup d(z,, w) = c.

n—oo n—oo n—oo
Since ¢ = lim d(zpy1,w) = lim d((1 — an)Tn ® @nt™yn, w), it implies by
n—oo n—oo
Lemma 2.8 that lim d(t"y,,x,) = 0. ]
n—oo
Lemma 3.4. Let K be a nonempty bounded closed convexr subset of a complete

CAT(0) space X, t : K — K and T : K — PB(K) a single-valued asymptotically
nonexpansive mapping and a multivalued nonexpansive mapping respectively with
(e e}

Fiz(t) N Fir(T) # O such that Pr is nonexpansive and Yy (k, — 1) < co. Let {zy}
n=1
be the sequence of Ishikawa iterates defined by (1.2). Then li_>m d(xpn, zn) = 0.
Proof. Let 1 € K and w € Fix(t) N Fix(T), in view of Lemma 3.1, w € Pp(w) =
{w}. Consider,
d(xnt1,w) = d((1 — an)xn @ aptyn, w)
< (1 —ap)d(xn, w) + and(t"y,, w)
< (1= ap)d(zn, w) + ank,d(yn, w)
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and hence

d(xpy1,w) — d(2p, w)

" < knd(Yn, w) — d(xn, w).

Therefore, by 0 < a < oy, < b < 1, it follows that
(d(an, w) — d(zp, w)

Qp

) + d(Tpn, w) < kpd(yn,w).

Thus,

n— 00 (7% n— 00

lim inf { (d(xn+1,w) — d(mn,w)> + d(:cn,w)} < liminf &k, d(yn, w).

It follows that

¢ < liminf d(y,, w).

n—oo

Since lim sup d(y,,w) < ¢, it follows that

n—oQ

c= lim d(yp,w) = lim d((1 — Bn)xn @ Bnzn,w).
n—oo

n—oo

Recall that
d(zn,w) = dist(zn, Pr(w)) < H(Pr(t"z,), Pr(w)) < d{t"z,,w) < k,d(z,,w).

Hence,
lim sup d(zp, w) < limsup k,d(z,,w) < limsup d(z,,w) = c.
n—oo n—oQ n—oo
Thus,
lim d(z,,z,) =0. a
n—oo

Lemma 3.5. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X, t : K — K and T : K — PB(K) a single-valued asymptotically
nonexpansive mapping and a multivalued nonexpansive mapping respectively with

oo
Fiz(t) N Fir(T) # 0 such that Pr is nonexpansive and Y, (k, — 1) < co. Let {xy}
n=1
be the sequence of Ishikawa iterates defined by (1.2). Then 1i_>m d(t" @y, x,) = 0.
Proof. Consider,

d(t"xn, vp) < d{t" @0, t"Yn) + At Yn, Tn)
< knd(zhn, yn) + d(t" Yn, Tn)
= knd(zn, (1 — Bn)xn @ Brnzn) + dt"yn, xn)
< kn[(1 = Bn)d(wn, xn) + Bud(xn, 2n)] + d(t"Yn, Tn)
= knBnd(Xn, zn) + At Yn, Tp).
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Then,
lim d(t"z,, z,) < hm knBrnd(zn, xyn) + lim d(t"yn,zn).
n—oo n—o0
Hence, by Lemmas 3.3 and 3.4, lim d(t"x,,z,) = 0. O
n—oo

Lemma 3.6. Let K be a nonempty bounded closed convexr subset of a complete
CAT(0) space X, t : K — K and T : K — PB(K) a single-valued asymptotically
nonezxpansive mapping and a multivalued nonexpansive mapping respectively with

Fiz(t) N Fir(T) # O such that Pr is nonezpansive and . (k, — 1) < co. Let {z,}
n=1
be the sequence of Ishikawa iterates defined by (1.2). Then lim d(tx,,z,)=0.
n—oo

Proof. Consider,

d(txn, xy) = d(xpn, tz,)

(
< d(
< d(
< d(

Ty, t" Xy

Y+ d(t" ", txy,)

T, t"x) + kr [d(t" g, t" ) A 1, 1)

Ty, t"x) + kikp 1d(zy, Tp_1) + krd(t" 2,1, )

< d(n, t"xn) + kikn_10m 1d(t" Y1, Tp_1)

+E(1—ap 1)d@n_1,t"  n 1) F kikn 10 1d(Yn1, 1)

< d(n, t"n) + kikn 100 1d(t" Y1, 2p_1)

+ k(1 —ap1)d(@n_1,t" 1) F kikn 101 Bn_1d(2n1, Tp_1).

It follows from Lemmas 3.2 — 3.4 that,

lim d(tz,,z,) = 0. O

n—oo

Theorem 3.7. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X, t : K — K and T : K — PB(K) a single-valued asymptotically
nonezxpansive mapping and a multivalued nonexpansive mapping respectively with

Fiz(t) N Fir(T) # O such that Pr is nonezpansive and . (k, — 1) < co. Let {z,}
n=1

be the sequence of Ishikawa iterates defined by (1.2). Then {x,} is A—convergent

to y implies y € Fiz(t) N Fiz(T).

Proof. Since {x,} is A—convergent to y. From Lemma 3.6,

lim d(txn,x,) = 0.
n—oo

By Corollary 1.6, y € K and ty = y, it follows that y € Fix(¢). It follows from
Lemma 2.9 that,

dist(y, Pr(y)) < d(y, xn) + dist(zn, Pr(zn)) + H(Pr(zn), Pr(y))

<d
< d(y, zn) + d(Tn, 2n) + d(zn,y) = 0 asn — oo.
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It follows that y € Fix(Pr) then y € Fix(T). Therefore y € Fix(t) N Fix(T) as
desired. O

Theorem 3.8. Let K be a nonempty bounded closed convex subset of a complete

CAT(0) space X, t: K - K and T : K — PB(K) a single-valued asymptotically

nonexpansive mapping and a multivalued nonexpansive mapping respectively with
o0

Fiz(t) N Fir(T) # 0 such that Pr is nonexpansive and Y, (k, — 1) < co. Let {x,}

n=1
be the sequence of Ishikawa iterates defined by (1.2). Then {x,} is AN—convergent
to a common fized point of t and T'.

Proof. Since Lemma 3.6 guarantees that {x,} is bounded and lim d(tx,,z,) = 0.
n—oo

So, let wy, (xy,) := UA({uy}) where the union is taken over all subsequences {uy} of
{zn}. If wy(xy,) C Fix(t) N Fix(T), then there exists a subsequence {uy} of {z,}
such that A({u,}) = {u}. By Lemmas 1.2 and 1.3 there exists a subsequence {v,}
of {uy} such that A — nh_>rrolo v, =v € K. Since nh_)rr;o d(tvp, v,) = 0, it follows that

v € Fix(t). Since,
dist(v, Pr(v)) < dist(v, Pr(v,)) + H(Pr(v,), Pr(v))

< d(v,zp) + d(vn,v)

< d(v,vy) + d(vn, zn) + d(v,,v) = 0 asn — oco.

It follows that v € Fix(Pr) and v € Fix(T) by Lemma 3.1. Therefore v € Fix(t) N

Fix(T) as desired. Suppose that u # v, since t is a single-valued asymptotically

nonexpansive mapping and v € Fix(¢t) NFix(T'), lim d(z,,v) exists by Lemma 3.2.

n—oo

Then by the uniqueness of asymptotic centres,

lim sup d(vy,, v) < limsup d(v,, u)
n—oo n—oo

< lim sup d(uy,, u)
n—oo

n—oo

n—oo

(
(
< limsup d(uy, v)
= limsup d(z, v)
(vn, )

= limsup d(vy,,v
n—oo

a contradiction, and hence v = v € Fix(¢t) N Fix(T").

To show that {z,} is A—convergent to a common fixed point of ¢t and T, it
suffices to show that w,, (z,,) consists of exactly one point. Let {u, } be a subsequence
of {x,,}. By Lemmas 1.2 and 1.3 there exists a subsequence {v,, } of {u,} such that
A — lim v, =v € K. Let A({u,}) = {u} and A({z,}) = {z}. It has seen that

n—oo
u=v and v € Fix(¢) N Fix(T).
It can complete the proof by showing that x = wv. Suppose not, since



Ishikawa Iteration Scheme for two Nonlinear Mappings

lim d(z,,v) exists, then by the uniqueness of asymptotic centres,
n—oo

lim sup d(v,,,v) < limsup d(vy,, x)
n— o0 n— o0

(
< limsup d(zy,, x)
n—oo
< limsup d(x,,v
n—roo
(

)
= lim sup d(v,, v)
n—oo

a contradiction, and hence the conclusion follows. O
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