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ABSTRACT. The aim of the present paper is to study the d-Lorentzian trans-Sasakian
manifold endowed with semi-symmetric metric connections admitting n-Ricci Solitons and
Ricci Solitons. We find expressions for the curvature tensor, the Ricci curvature tensor
and the scalar curvature tensor of d-Lorentzian trans-Sasakian manifolds with a semi-
symmetric-metric connection. Also, we discuses some results on quasi-projectively flat
and ¢-projectively flat manifolds endowed with a semi-symmetric-metric connection. It is
shown that the manifold satisfying R.S = 0, P.§ = 0 is an n-Einstein manifold. More-
over, we obtain the conditions for the é-Lorentzian trans-Sasakian manifolds with a semi-
symmetric-metric connection to be conformally flat and &-conformally flat.

1. Introduction

In 1924, the idea of a semi-symmetric linear connection on a differentiable man-
ifold was introduced by A. Friedmann and J. A. Schouten [13]. In 1930, Bartolotti
[5] gave a geometrical meaning of such a connection. In 1932, H. A. Hayden [16]
defined and studied semi-symmetric metric connections. In 1970, K. Yano [42],
started a systematic study of semi-symmetric metric connections in a Riemannian
manifold and this was further studied by various authors such as Sharfuddin Ahmad
and S. I. Hussain [31], M. M. Tripathi [34], I. E. Hirica and L. Nicolescu [17, 18],
G. Pathak and U.C. De [27].

Let V be a linear connection in an n-dimensional differentiable manifold M.
The torsion tensor T" and the curvature tensor R of V are given respectively by

T(X,Y)=VxY - VyX — [X,Y],

R(X, Y)Z =VxVyZ -VyvVxZ — v[X,Y]Z-
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The connection V is said to be symmetric if its torsion tensor 7' vanishes,
otherwise it is non-symmetric. The connection V is said to be a metric connection
if there is a Riemannian metric g in M such that Vg = 0, otherwise it is non-
metric. It is well known that a linear connection is symmetric and metric if it is
the Levi-Civita connection.

A linear connection V is said to be a semi-symmetric connection if its torsion
tensor T is of the form

T(X,Y) =n(Y)X —n(X)Y,

where 7 is a 1-form. Semi-symmetric connections play an important role in the
study of Riemannian manifolds. There are various physical problems involving the
semi-symmetric metric connection. For example, if a man is moving on the surface
of the earth always facing one definite point, say Jaruselam or Mekka or the North
pole, then this displacement is semi-symmetric and metric [13].

The study of differentiable manifolds with Lorentizain metric is a natural and
interesting topic in differential geometry. In 1996, Tkawa and Erdogan studied
Lorentzian Sasakian manifold [20]. Also Lorentzian para contact manifolds were
introduced by Matsumoto [24]. Trans Lorentzian para Sasakian manifolds have
been used by Gill and Dube [15]. In [41], Yildiz et al. studied Lorentzian a-
Sasakian manifold and Lorentzian S-Kenmotsu manifold studied by Funda et al. in
[40]. S. S. Pujar and V. J. Khairnar [28] have initiated the study of Lorentzian trans-
Sasakian manifolds and studied the some basic results with some of its properties.
Earlier to this , S. S. Pujar [29] studied the §-Lorentzian a-Sasakian manifolds and
d-Lorentzian S-Kenmotsu manifolds.

The study of manifolds with indefinite metrics is of interest from the standpoint
of physics and relativity. In 1969, Takahashi [36] has introduced the notion of al-
most contact metric manifolds equipped with pseudo Riemannian metric. These
indefinite almost contact metric manifolds and indefinite Sasakian manifolds are
known as (¢)-almost contact metric manifolds. The concept of (¢)-Sasakian mani-
folds was initiated by Bejancu and Duggal [6] and further investigation was taken
up by X. Xufeng and C. Xiaoli [39]. U. C. De and A. Sarkar [11] studied the notion
of (e)-Kenmotsu manifolds with indefinite metric. S. S. Shukla and D. D. Singh
[32] extended with indefinite metric which are natural generalization of both (¢)-
Sasakian and (g)-Kenmotsu manifolds called (e)-trans-Sasakian manifolds. Siddiqi
et al. [33] also studied some properties of Indefinite trans-Sasakian manifolds which
is closely related to this topic.

The semi Riemannian manifolds has the index 1 and the structure vector field
¢ is always a time like. This motivated Thripathi and others [34] to introduced
(e)-almost paracontact structure where the vector filed ¢ is space like or time like
according as (¢) =1 or (¢) = —1.

When M has a Lorentzian metric g, that is a symmetric non-degenerate (0, 2)
tensor field of index 1, then M is called a Lorentzian manifold. Since the Lorentzian
metric is of index 1, Lorentzian manifold M has not only spacelike vector fields but
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also timelike and lightlike vector fields. This difference with the Riemannian case
gives interesting properties on the Lorentzian manifold. A differentiable manifold
M has a Lorentzian metric if and only if M has a 1-dimensional distribution. Hence
odd dimensional manifold is able to have a Lorentzian metric. Inspired by the above
results in 2014, S. M Bhati [8] introduced the notion of é-Lorentzian trans Sasakian
manifolds.

In 1982, R. S. Hamilton [19] said that the Rici solitons move under the Ricci
flow simply by diffeomorphisms of the initial metric that is they are sationary points
of the Ricci flow is given by

(1.1) % = —2Ric(g).

Definition 1.1. A Ricci soliton (g,V, A) on a Riemannian manifold is defined by
(1.2) Lyvg+2S+2X\ =0,

where S is the Ricci tensor, Ly is the Lie derivative along the vector field V' on
M and ) is a real scalar. Ricci soliton is said to be shrinking, steady or expanding
according as A < 0, A\ =0 and A > 0, respectively.

In 1925, Levy [22] obtained the necessary and sufficient conditions for the ex-
istence of such tensors. later, R. Sharma [30] initiated the study of Ricci solitons
in contact Riemannian geometry . After that, Tripathi [35], Nagaraja et al. [25]
and others like C. S. Bagewadi et al. [4] extensively studied Ricci soliton. In 2009,
J. T. Cho and M. Kimura [9] introduced the notion of n-Ricci solitons and gave
a classification of real hypersurfaces in non-flat complex space forms admitting 7-
Ricci solitons. Later n-Ricci solitons in (¢)-almost paracontact metric manifolds
have been studied by A. M. Blaga et al. [3]. A. M. Blaga and various others
authors also have been studied n-Ricci solitons in different structures (see [1, 2,
10]). Recently in 2017, K. Venu and G. Nagaraja [38] study the n-Ricci solitons in
trans-Sasakian manifold. It is natural and interesting to study n-Ricci soliton in §-
Lorentzian trans-Sasakian manifolds with a semi-symmetric metric connection not
as real hypersurfaces of complex space forms but a special contact structures. In
this paper we derive the condition for a 3 dimensional §-Lorentzian Trans-Sasakian
manifold with a semi-symmetric metric connection as an n-Ricci soliton and derive
expression for the scalar curvature.

Moreover, in this paper we introduced the relation between metric connec-
tion and semi-symmetric metric connection in an n-dimensional §-Lorentzian trans-
Sasakian manifolds. Also, we have proved some results on curvature tensor, scalar
curvature, quasi projective flat, ¢-projectively flat, R.S = 0, P.S = 0, Weyl confor-
mally flat, Weyl £-conformally flat receptively in n-dimensional é-Lorentzian trans-
Sasakian manifolds with a semi-symmetric metric connection.
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2. Preliminaries

Let M be a d-almost contact metric manifold equipped with d-almost contact
metric structure (¢, &, 1, g,0) [7] consisting of a (1,1) tensor field ¢, a vector field &,
a 1-form 7 and an indefinite metric g such that

(2.1) ¢* =X +n(X)¢, nop=0, ¢£=0,
(2.2) n(€) = -1,

(2.3) 9(&,€) = 4,

(2.4) n(X) = d09(X,§),

(2.5) 9(¢X, ¢Y) = g(X,Y) + on(X)n(Y)

for all X,Y € M, where § is such that 6> = 1 so that § = 1. The above structure
(¢,€,m,9,0) on M is called the § Lorentzian structure on M. If 6 = 1 and this is
usual Lorentzian structure [8] on M, the vector field £ is the time like [42], that is
M contains a time like vector field.

In [37], Tanno classified the connected almost contact metric manifold. For such
a manifold the sectional curvature of the plane section containing £ is constant, say
c¢. He showed that they can be divided into three classes. (1) homogeneous normal
contact Riemannian manifolds with ¢ > 0. Other two classes can be seen in Tanno
[37].

In Grey and Harvella [14] classification of almost Hermitian manifolds, there
appears a class W, of Hermitian manifolds which are closely related to the conformal
Kaehler manifolds. The class Cs @ C5 [26] coincides with the class of trans-Sasakian
structure of type (a, ). In fact, the local nature of the two sub classes, namely
Cs and Cj of trans-Sasakian structures are characterized completely. An almost
conatct metric structure [43] on M is called a trans-Sasakian (see [12, 23, 26]) if
(M x R, J,G) belongs to the class Wy, where J is the almost complex structure on
M x R defined by

7 (x.15) = (600 - ren0 )

for all vector fields X on M and smooth functions f on M x R and G is the product
metric on M x R. This may be expressed by the condition

(2.6) (Vx@)Y = a(g(X,Y)§ —n(Y)X) + B(9(¢ X, Y)E — n(Y)pX)

for any vector fields X and Y on M, V denotes the Levi-Civita connection with
respect to g, @ and 8 are smooth functions on M. The existence of condition (2.3)
is ensure by the above discussion.
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With the above literature, we define the §-Lorentzian trans-Sasakian manifolds
[8] as follows:

Definition 2.1. A §-Lorentzian manifold with structure (¢, £, 7, g, ) is said to be
0-Lorentzian trans-Sasakian manifold of type («a, §) if it satisfies the condition

27 (Vx9)Y = a(9(X,Y)E — an(Y)X) + B(g(6X,Y)E — on(Y)oX)
for any vector fields X and Y on M.

If 6 = 1, then the §-Lorentzian trans Sasakian manifold is the usual Lorentzian
trans Sasakian manifold of type (a, 8) [26]. d-Lorentzian trans Sasakian manifold
of type (0,0), (0, 8) («,0) are the Lorentzian cosymplectic, Lorentzian -Kenmotsu
and Lorentzian a-Sasakian manifolds respectively. In particular if « = 1, 8 = 0 and
a =0, 8 =1, the d-Lorentzian trans Sasakian manifolds reduces to §-Lorentzian
Sasakian and d-Lorentzian Kenmotsu manifolds respectively [21].

Form (2.4), we have

(2.8) Vx&=0{-ad(X) - B(X +n(X)¢},
and
(2.9) (Vxn)Y = ag(¢X,Y) + Blg(X,Y) + on(X)n(Y)].

In a é-Lorentzian trans Sasakian manifold M, we have the following relations:
(2.10)  R(X,Y)E= (o + B)(Y)X —n(X)Y] +2aB[n(Y)¢X —n(X)¢Y]

+0[(Ya)oX — (Xa)oY + (Y B)¢*X — (XB)9?Y],

(2.11) R(&,Y)X = (o 4+ B%)[6g(X,Y)E — n(X)Y]
+i(Xa)pY + 0g(¢pX,Y)(grada)
+6(XB)(Y +n(Y)E) — 9(oY, ¢X))(gradB)

+2a3[09(¢ X, Y)E +n(X)oY],
(2.12) N(R(X,Y)Z) = 6(a® + ) [n(X)g(Y. Z) — n(Y)g(X, Z)

+20aB[—n(X)g(oY, Z) + n(Y)g(¢X, Z)]
—[(Ya)g(¢X, Z) + (X)g(Y, $Z)]
—(YB)g(¢°X, Z) + (XB)g(¢°Y, Z)),

(213)  S(X,8) = [((n —1)(a® + %) — (€B)]n(X) + 5((¢ X)) + (n — 2)5(X ),
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(2.14) S(6.€) = (n—1)(a® + 5%) = 5(n —1)(B),

(215) Q€= (3(n—1)(a® + 5) — (€8))¢ + dd(grada) — 5(n — 2)(grads),

where R is curvature tensor, while ) is the Ricci operator given by S(X,Y) =
9(QX,Y).
Further in an d-Lorentzian trans-Sasakian manifold , we have

(2.16) 0¢(grada) = §(n — 2)(gradp),
and
(2.17) 2a8 — §(&a) = 0.

The {-sectional curvature K¢ of M is the sectional curvature of the plane spanned
by £ and a unit vector field X. From (2.11), we have

(2.18) K¢ = g(R(§,X), &, X) = (o + 5%) - 6(¢).
Tt follows from (2.17) that ¢-sectional curvature does not depend on X. From (2.11)
(2.19) 9(R(§,Y)Z.€) = [(o® + %) = 8(¢B)]9(Y, 2)

+(€8) — b(a” + BA)In(Y)n(Z) + 208 + 8(60)]g(4Y, 2),

(2.20) C(X,Y)Z=R(X,Y)Z — ﬁ[S’(Y, )X -S(X,2)Y
+g(Y, Z)QX_Q(X7Z>QY]+m[g(Ya 2)X—9(X,2)Y].

An affine connection V in M is called semi-symmetric connection [13], if its
torsion tensor satisfies the following relations

(2.21) T(X,Y)=VxY - VyX — [X,Y],
and
(2.22) T(X, Y)=n(X)Y —n(Y)X.

Moreover, a semi-symmetric connection is called semi-symmetric metric connection
if

(2.23) 3(X,Y) = 0.

If V is metric connection and V is the semi-symmetric metric connection with
non-vanishing torsion tensor 7" in M, then we have

(2.24) T(X,Y) = n(Y)X = n(X)Y,
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(2.25) VxY —VyY = %[T(X, Y)+T (X,Y)+T (X,Y)),
where
(2.26) 9(T(Z,X),Y) = g(T (X,Y), Z).

By using (2.4), (2.23) and (2.25), we get
9T (X,Y),Z) = gn(X)Z = 0(2)X,Y),

g(T/(Xv Y),Z) = n(X)g(Zv Y) - 6g(X’ Y)g(§7Z)7

(2.27) T (X,Y) =n(X)Y —6g(X,Y)E,

(2.28) T'(Y, X) =n(Y)X = 5g(X,Y)E,
From (2.23), (2.24),(2.26) and (2.27), we get
VxY =VxY +n(Y)X - 6g(X,Y)E.

Let M be an n-dimensional é-Lorentzian trans-Sasakian manifold and V be
the metric connection on M. The relation between the semi-symmetric metric
connection V and the metric connection V on M is given by

(2.29) VxY =VxY +n(Y)X - §g(X,Y)¢E.

3. Curvature Tensor on j-Lorentzian Trans-Sasakian Manifold with a
Semi-symmetric Metric Connection

Let M be an n-dimensional ¢-Lorentzian trans-Sasakian manifold. The cur-
vature tensor R of M with respect to the semi-symmetric metric connection V is
defined by

(3.1) R(X,Y)Z =VxVyZ—VyVxZ —VixyZ.

By using (2.4), (2.28) and (3.1), we get

(3.2) R(X,Y)Z=R(X,Y)Z+ (§)[g(X,2)Y —g(Y, Z)X]

+(B+)[g(Y, Z)n(X) — g(X, Z)n(Y)]§
—(B6 = )[n(Y)X —n(X)Y]n(Z),
+alg(0X, 2)Y —g(oY, Z)0X — g(X, Z)pY +g(Y, Z)p X],

where
R(X,Y)Z =VxVyZ —-VyVxZ— Vix v 4
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is the Riemannian curvature tensor of connection V.

Lemma 3.1. Let M be an n-dimensional §-Lorentzian trans-Sasakian manifold
with a semi-symmetric metric connection, then

(3.3) (Vxo)(Y) = a(g(¢X, V)€ — n(Y)X) + B(g(¢X,Y)E — (68 + 0)n(Y)pX),
(34) Vx§=—(1+08)X - (1+B8)n(X)§ — dagX,

(3.5) (Vxn)Y = ag(pX,Y) + (8 +6)g(X,Y) — (14 B0)n(X)n(Y).

Proof. By the covariant differentiation of ¢Y with respect to X, we have

VxoY = (Vxo) + ¢(VxY).

By using (2.1) and (2.28), we have
(Vx9)Y = (Vx9)Y —n(Y)¢X.
In view of (2.7), the last equation gives
(Vx¢)(Y) = alg(dX,Y)E — on(Y)X) + B(g(¢X,Y)E — (38 + 8)n(Y)dX).
To prove (3.4), we replace Y = £ in (2.28) and we have
Vx€=Vx€&+n()X —dg(X, .
By using (2.2), (2.4) and (2.8), the above equation gives
Vxé=—(1+68)X — (1+8)n(X)¢ — dapX.

In order to prove (3.5), we differentiate n(Y") covariantly with respect to X and
using (2.28), we have

Vxn(Y) = (Vxn)Y +g(X,Y) — n(X)n(Y).
Using (2.9) in above equation, we get

(Vxn)Y = ag(¢X,Y) + (84 8)g(X,Y) — (14 80)n(X)n(Y). O

Lemma 3.2. Let M be an n-dimensional §-Lorentzian trans-Sasakian manifold
with a semi-symmetric metric connection, then

(3.6) R(X,Y)E = (a® + % = 08)n(X)Y —n(Y)X].

+ (208 + 62) (V)X — n(X)¢Y]
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H[(Y)pX — (=X )oY — (XB)¢*Y + (Y B)¢° X].
Proof. By replacing Z = £ in (3.2), we have

R(X,Y)E = R(X,Y)E+ (9)[g(X, €)Y —g(Y,£)X]

+(B +0)[g(Y,E)n(X) — g(X, On(YV)
—(80 = DIn(Y)X = n(X)Y]n(E)
+ag(dX, )Y — g(Y, )X — g(X, §)9Y + g(Y,£)oX]
In view of (2.2), (2.4) and (2.10), the above equation reduces to

R(X,Y)¢ = (@ + 2 = 0B)[n(X)Y —n(Y)X]
+(2a8 + 6a)[n(Y)oX —n(X)eY]
+0[(Ya)oX — (Xa)pY — (XB)¢*Y + (Y B)¢*X]. =
Remark 3.1. Replace Y = £ and using (3.2), (2.11), (2.2) and (2.4), we obtain
(3.7) R(X,€)€ = (o + 5% = 6p)[-X — n(X)Y]
+(2a8 + da + 6(a))[¢X + 5(£5)¢° X].

Remark 3.2. Now, again replace X = ¢ in (3.6), using (2.1), (2.2) and (2.4), we
obtain

(3.8) R(&,Y)E = (o® + B2 = 6B)[-n(Y)E = V]
—(2a8 + 8o+ §(¢a))[pY — 5(£B)¢°Y .

Remark 3.3. Replace Y = X in (3.8), we get

(3.9) R(§, X)§ = —(a® + 32 = 68)[-X — n(X)¢]

—(2a8 + da + §(6a)) [pX — 3(£8)¢° X].
From (3.7) and (3.9), we obtain

(3.10) R(X, )¢ = —R(¢ X)E.

Now, contracting X in (3.2), we get

(3.11) S(Y,2) =5, 2) - [(6)(n —2) + Blg(Y, Z)

—(B6 = 1)(n=2)n(Z)n(Y) — a(n — 2)g(¢Y, Z),
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where S and S are the Ricci tensors of the connections V and V, respectively on
]T\iis gives
(3.12) QY = QY —[(6)(n—2) + B)Y

—(B0 = 1)(n = 2)n(Y)¢ — a(n — 2)¢Y,

where Q and Q are Ricci operator with respect to the semi-symmetric metric con-
nection and metric connection respectively and define as g(QY, Z) = S(Y, Z) and
9(QY, Z) = S(Y, Z) respectively.

Replace Y = ¢ in (3.12) and using (2.15), we get

(3.13) Q¢ = d(n—1)(a® + )€ — (£B)E — 26(n — 2)¢
+do(grada) — 6(n — 2)(gradB) — B(n — 1)E.

Putting Y = Z = e; and taking summation over ¢, 1 <4 < mn — 1 in (3.11), using
(2.14) and also the relations 7 = S(e;,e;) = Y. §;R(e;, €4, €5, €;), we get

(3.14) F=r—(n—-1[d)n-2)+28],

where 7 and r are the scalar curvatures of the connections V and V, respectively
on M.
Now, we have the following lemmas.

Lemma 3.3. Let M be an n-dimensional d-Lorentzian trans-Sasakian manifold
with a semi-symmetric metric connection, then

(3.15) S(¢Y,Z) = —6(¢°Y ) = 6(n — 2)(¢Y)B — a(n — 2)g(¢Y, ¢2),

(3.16) S(Y,€) = [(n—1)(a® + % = 6(68) — B(n — 1)]n(Y)
+0(n—2)(Y ) +0(¢Y)B,

(3.17) S(&,€) = [(n—1)(a® + % = 6(68) — 6B(n — Dn(Y).

Proof. By replacing Y = ¢Y in equation (3.11) and using (2.13) and (2.5), we
have (3.15). Taking Y = £ in (3.11) and using (2.13) we get (3.16). (3.17) follows
from considering Y = ¢ in (3.16) we get (3.17). O

Lemma 3.4. Let M be an n-dimensional §-Lorentzian trans-Sasakian manifold
with a semi-symmetric metric connection, then

(3.18) S(grada, &) = 6(n —1)(® + B2(£B) — B(n — 1)(£a) — (§a)(£B)
+(dgrada)a + 6(n — 2)g(grada, gradf),
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(3.19) S(gradp, &) = d(n — 1)(a® + *(£8) — B(n — 1)(£B) — (£6)*
+6(pgradB)a + 6(n — 2)g(gradB)?.

Proof. From equation (3.11) and (3.16) and using Y = grada we have (3.18) .

Similarly taking £ = gradf in (3.11) and using (3.16), we get (3.19). Using (3.6),

(3.13) and (3.16), for constant « and 3, we have

(3.20) R(X,Y)E = (a® + % = 8(B8)n(Y)X — n(X)Y],
(3.21) S(X,Y) = [(n—1)(a® + % = 6(¢8) — 66(n — Dn(Y),
(3.22) Q€ = d(n—1)(a® + %6~ 5(B)€ —20(n —2) — B(n — 1)&. o

4. Quasi-projectively flat j-Lorentzian trans-Sasakian Manifold with a
Semi-symmetric Metric Connection

Let M be an n-dimensional d-Lorentzian trans-Sasakian manifold. If there exists
a one to one correspondence between each co-ordinate neighborhood of M and a
domain in Euclidean space such that any geodesic of d-Lorentzian trans-Sasakian
manifold corresponds to a straight line in the Euclidean space, then M is said
to be locally projectively flat. The projective curvature tensor P with respect to
semi-symmetric metric connection is defined by

(4.1) P(X,Y)Z = R(X,Y)Z — Til)[sxy, Z2)X - 8(X, 2)Y).

Definition 4.1. A §-Lorentzian trans-Sasakian manifold M is said to be quasi-
projectively flat with respect to semi-symmetric metric connection, if

(4.2) 9(P(¢X,Y)Z,¢U) =0,

where P is the projective curvature tensor with respect to semi-symmetric metric
connection.
Now, from (4.1) taking inner product with U, we get

1
(n—1)

(4.3) g(P(X,Y)Z,U) = g(R(X,Y)Z,U) —

[S(Y, 2)g(X,U) — 5(X, Z)g(Y, U)).
Replace X = ¢X and U = ¢U in (4.3), we get

1

(4.4) g(P(6X,Y)Z,¢U) = g(R(6X,Y)Z,¢U) — o
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[S(Y. 2)9(¢X,¢U) — S(¢X, Z)g(Y, ¢U)].
From (4.2) and (4.4), we have

1
(n—1)

Now, using equations (2.1), (2.4), (3.11) and (3.15) in equation (4.5), we have

(4.5) g(R(¢X,Y)Z,¢U) = [S(Y, Z)g(¢X, ¢U) — S(¢X, Z)g(Y, ¢U)].

(4.6) g(R(¢X,Y)Z,¢U) = [S(Y. 2)9(X,0U) — S(¢X, Z)g(Y, ¢U)]

1
(n—1)
(5 + B)
—1)

-1

(654 8)
CE
(Y )(Z)g(6X, 6U) + -

9(¢X, Z)g(Y,0U) +

)
(-1

9(Y, 2)g(6 X, ¢U)
@)

(n—1)
T@_ ) —(nf [j9(6Y: 2)g(6X. 0U)

+ag(Y, 2)9(X, oU) + ag(¢X, Z)g(¢ X, U).

Let {e1, eq........ en—1,&} be alocal orthonormal basis of vector fileds on d-Lorentzian
trans-Sasakian manifold M, then {¢e1, des........ @pen—1,&} is also a local orthonormal
basis of vector fields on J-Lorentzian trans-Sasakian manifold M. Now, putting
X = U = ¢; in equation (4.6) and using (2.2), (2.3),(2.19), (3.11) and (3.16), we
have

47) S, 2)=[(n-2)(8+0) +d(n—1)(a*+ %) - (n = 1)(B))g(Y, 2)
+[6(n = 2)(¢B) + (n = 2)(B5 — VIn(Y)n(2)
—[20(n = Daf + (n —1)(§a) — a]g(4Y, Z)

—0n(Y)(¢Z)a = d(n = 2)(£4)n(Y).

If « =0 and 8 = constant in (4.7), we get

(4.8) S(Y.Z) =[(n=2)(B+6) + (n—1)6%)g(Y, Z) + (85 = 1)(2 = n)n(Y)n(Z).

n(X)n(Z)g(¢X, oU)

9(X, Z)g(Y, oU) —

Therefore, we have
S(Y.Z) = ag(Y,Z) + (Y )n(Z),

where a = (n —2)(8+9) + (n — 1)§82 and b= (85 — 1)(2 — n).
These results shows that the manifold under the consideration is an n-Einstein
manifold. Thus we can state the following theorem:

Theorem 4.1. An n-dimensional quasi projectively flat 6-Lorentzian trans-
Sasakian manifold M with respect to a semi-symmetric metric connection is an
n-FEinstein manifold if « =0 and 8 = constant.
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5. ¢-Projectively flat j-Lorentzian Trans-Sasakian Manifold with a Semi-
symmetric Metric Connection

An n-dimensional d-Lorentzian trans-Sasakian manifold with a semi-symmetric
metric connection is said to be ¢-projectively flat if

(5.1) ¢*(P(¢X,¢Y)$Z) =0,

where P is the projective curvature tensor of M n-dimensional 6-Lorentzian trans-
Sasakian manifold with respect to a semi-symmetric metric connection. Suppose
M be ¢-projectively flat J-Lorentzian trans-Sasakian manifold with respect to a
semi-symmetric metric connection. It is know that ¢?(P(¢, X, ¢Y)¢Z) = 0 holds if
and only if

(5:2) 9(P(¢X,9Y)9Z,U) = O,
for any X,Y,Z,U € TM. Replace Y = ¢Y and U¢U in (4.4), we have

b
(n—1)

[S(8Y,62)g(¢X, U) — S(6.X,9Z)g(Y, ¢U)].
From (5.2) and (5.3), we have

(5:3) 9(P(¢X,0Y)0Z,¢U) = g(R(¢X, ¢Y )9 Z,¢U) —

(5.4) 9(R(¢X,0Y)9Z,¢U) = [S(6Y, 62)9(¢X, $U)

1
(n—1)

—S(0X,02)9(¢Y. 9U)).

Now, using (2.1),(2.2),(2.4),(2.5), (3.2) and (3.11) in equation (5.4), we have
(5.5)

9(R(¢X,9Y)9Z,9U) =

(n i ) [S(¢Y,02Z)g(¢X,pU) — S(¢X, $Z)g(¢Y, ¢U)]

(0+5) (0 +5)
(n—1)

(n—1)

_mg(ya ¢Z)g(p X, U) — mQ(X, oY Z)g(p X, ¢U)

9(9Y, 9Z)g(0 X, 0U) + 9(¢X,02)g(¢Y, ¢U)

+ag(eY,¢2)g(X,oU) — ag(¢ X, ¢Z)g(Y, U).

Let {e1, €a.cen.... en—1,&} be alocal orthonormal basis of vector fileds on §-Lorentzian
trans-Sasakian manifold M, then {¢e;, des........ ¢en—1,&} is also a local orthonormal
basis of vector fields on §-Lorentzian trans-Sasakian manifold M. Now putting



550 Mohd Danish Siddigi

X =U = e; in equation (5.5) and using (2.1)—(2.5), (2.19), (3.11) and (3.16), we
have

(5.6) S(Y,2)=[(n—2)(8+0)+d(n—1)(a®+ %) — (n—1)(B)]g(Y, Z)
+[26(n = 2)(€8) + (n = 2)(B6 = Dn(Y)n(2)
+la=20aB(n - 1) = (n - 1)(Ea)]g(¢Y, Z)
—[0(¢Z)a+ 6(n = 2)(ZB)In(Y) = [6(¢Y ) + 6(n — 2)(Y B)]n(Z)

If « =0 and 8 = constant in (5.6), we get

(5.7) S(Y.Z) =[(n—2)(B+ ) + (n—1)65%)g(Y, Z) + (85 — 1)(2 = n)n(Y )n(Z).

Therefore,
S(Ya Z) = ag(Y7 Z) + bW(Y)ﬁ(Z),

where a = (n — 2)(B+6) + (n — 1)6% and b = (36 — 1)(2 — n).
This result shows that the manifold under the consideration is an 7-Einstein mani-
fold. Thus we can state the following theorem:

Theorem 5.1. An n-dimensional ¢-projectively flat §-Lorentzian trans-Sasakian
manifold M with respect to a semi-symmetric metric connection is an n-Einstein
manifold if « =0 and B = constant.

6. J-Lorentzian trans-Sasakian Manifold with a Semi-symmetric Metric
Connection satisfying R.S =0

Now, suppose that M be an n-dimensional §-Lorentzian trans-Sasakian manifold
with a semi-symmetric metric connection satisfying the condition:

(6.1) R(X,Y).S =0.

Then, we have

(6.2) S(R(X,Y)Z,U)+ S(Z,R(X,Y)U) = 0.

Now, we replace X = £ in equation (6.2), using equations (2.11) and (6.2), we have

(6.3)
8(a® + B*)g(Y, 2)S(6,U) — (o + B*)n(Z2)S(Y,U) - 26089(¢Y, Z)S(€,U)
+2aBn(2)S(9Y,U) + 6(2a)S(9Y, U) — dg(¢Y, Z)S(grada, U)
—09(¢Y,¢2)S(gradB,U) +6(ZB)S(Y,U) — 6(ZB)n(Y)S(&, V)
—09(Y,Z2)S(&,U) + on(2)S(Y,U) + ag(¢Y, Z)S(£,U) — dan(Z)S(4Y, U)
+d(a” + )9 (Y. U)S(E, Z) — (o® + B*)n(U)S(Y, Z) — 26aBg(¢Y,U)S(E, Z)
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+208(U)S(6Y, Z) + 8(Ua)S(6Y, Z) — 8g(6Y, U)S(grada, 2)

— 89(9Y, ¢U)S(gradB, Z) + 6(UB)S(Y, Z) — s(UB)(Y)S(&, 2)

—0g(Y.U)S(&, Z) + on(U)S(Y, Z) + ag(¢Y,U)S(¢, Z) — dan(U)S(¢Y, Z) = 0.
Using equations (2.1)-(2.5), (2.13), (2.14), (3.11) and (3.15)—(3.19) in equation (6.3)

[(a® + %) = 6(¢B) — 6B]S(Y, 2)
= [6(n = 1)(a® + B%) = 28(n — 1)(a® + %) — 2(n — 1)(a® + %) (£B)
+208(n — 1)(§B) — 6(68)* + (pgradB)a + (n.— 2)(gradp)®
+062(n—2) +5(n—2)(a® + B + B(a® + 5?)
—20%B(n - 2) — da(éa) — (n = 2)(E8) — GB(¢H)
= B(n —2) +6a®(n—2)|g(Y, Z) + [-6(dgradB)a
—d(n —2)(gradf)® + (n — 2)(86 — 1)(a® + %)
+260”B(n — 2) + a(n — 2)(€a) + (B + 8)(n — 2)(€5)
+B(B+0)(n—2) —a®(n—2)n(Y)n(Z) + [-20af(n — 1)(a® + )
+2(n = 2)af? + 2a8(n — 2)(€8) — (n — 1)(a® + 5°)(¢a)
+0B(n — 2)(¢a) + 3(60) (€8) + (dgrada)a + (n — 2)(g(grada, grads)
+a(a® + %) = da(€h) — 2a8(n — 2)(6) — (n —2)(da) + a(n — 2)]g(4Y, Z)
+ [6(6a) + 208 — 0a]S(¢Y, Z) + [(n — 2)(§B)(ZB)
+[0(a® + 8*)(9Z)a = 8(n — 2)(a® + 5)(ZB) + (£8)(¢2)
B(¢Z)a+ B(n = 2)(ZB)n(Y) + [6(a® + B)(¢Y )a + 6(n — 2)(a® + B*)(Y )
—26af3(¢?Y ) — 20aB(n — 2)(4Y B) — B(Y )
—B(n —2)(YB) + a(¢’Y)a + a(n — 2)(6Y B)In(Z)
= (n=2)(YB)(ZB) + (n —2)(ZB)(£B)-
If o =0 and S = constant in (5.6), we get
S(Y,Z) = ag(Y,Z) + bn(Y)n(Z),

[(n*1)5ﬂ4+(n*2)(gmdﬁ)2+(n*2)5ﬂ2+(n*2)5ﬁz*(n*Q),@+(2n*3)/33}

) (B+0)B )
and b = —[(=2WBO-1)5 +<nzﬁ2)+(§)+ﬁé)5—(n—2)5<g"ad5 ]. This show that M is an 7-
Einstein manifold. Thus,we can state the following theorem:

where a = —

Theorem 6.1. An n-dimensional d-Lorentzian trans-Sasakian manifold M with
respect to a semi-symmetric metric connection V satisfying R.S = 0, then 6-
Lorentzian trans-Sasakian manifold M is an n-Einstein manifold if a = 0 and
B = constant.

551
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7. ¢-Lorentzian Trans-Sasakian Manifold with a Semi-symmetric Metric
Connection satisfying P.S =0

Now, we consider d-Lorentzian trans-Sasakian manifold with a semi-
symmetric metric connection satisfying

(7.1) (P(X,Y).5)(Z,U) =0,

where P is the projective curvature tensor and S is the Ricci tensor with a semi-
symmetric metric connection.Then, we have

(7.2) S(P(X,Y)Z,U)+ S(Z,P(X,Y)U) = 0.
Replace X = ¢ in the equation (7.2), we get
(73) S(P(E,Y)Z,U) + §(Z, P(E,Y)U) = 0.

Putting X = ¢ in (4.1), we get

(7.4) PEY)Z =R(Y)Z %[S’(Y, Z)¢ - S(¢,2)Y).

-

Using (2.1), (2.2), (2.4), (2.11), (3.2), (3.11), (3.17) and (7.4) in (7.3), we get

(7.5)
a? + B2)(n — n— ~ _
3(a® + 8)( (nl)_+1)(5+5)( 2) (v, 2)S(6,U) — ﬁs(y’ 2)8(E.U)
- =B 55— purstev) + =220 v, 2156, 0)

)
—09(¢Y, Z)S(grada,U) — 69(¢Y, $Z)S(gradB, U) + 2an(Z)S(¢Y,U)
+0(Za)S(¢Y,U) +8(ZB)S(Y,U) = 8(ZB)n(Y)S(&,U) — dan(Z)S(¢Y. U)

- TS0 RS ~ e )as(r.0)
et B DL e )gmU)S(g,Z)—mll)smmﬁ@m

- CE R @ - )36, 2) + = v v)S(6.2)
— 69(¢Y,U)S(grada, Z) — 59(¢Y, 9U)S(gradp, Z) + 2an(U)S(¢Y, Z)
FO(U)S(6Y, Z) + 8(Z8)S(Y, Z) ~ JUBI(Y)S(E, 2) — ban(U)S (oY 2)

~ L sepmz)s (YZ>E §6<Uﬁ>5(xz>—

(n—1)

1)

3(@U)aS(Y,2) =0

1
(n—=1)
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Putting U = £ and Using (2.1)—(2.5), (3.11)and (3.15)—(3.20) in (7.5), we get

(7.6)

[(a® + B%) = 6(¢B) — 681S(Y, Z)
=[0(n = 1)(a® + 5%) + (n = 2)(80)(a” + B%) = B(n — 1)(a® + 57

—6(n —2)(86 — 1) = 2(n = 1)(£B)(a® + B%) — (n — 2)(85 — 1)(£5)

—2a%B(n — 2)da(n — 2)(£q) + da?(n — 2) +6B(n — 1) + 6(£8)*

+ (pgrada)a + (n — 2)(gradB)*|g(Y, Z) + [(n — 2)B(8 + 8) — (n — 2)(a® + §°)
+2(n — 2)0aB + a(n — 2)(€a) + (n — 2)(B + 6)(£8) — a(n — 2)

— 6(n —2)(gradp)® — 8(¢gradB)aln(Y)n(Z) + [a(a® + 5?)

—26af(a? + 5%)(n — 1) = 2a8%n — §(¢8) — dB(Er) + 2a8(£8)

—20af(n —2) — (n—1)(€a) + a(n — 2) — (n = 1)(a® + 5%)(€a) + (n — 1)d5(¢a)
+6(a)(€B) + (pgrada)a+)n — 2)g(grada, gradB)|g(9Y, z) + [da + 6(Ea)
—0a]S(Y, Z) + [6(n + 3)(a® + 52)(ZB) + B(n — 2)(ZB) — delta(a® + 5°)(6Z)a
+(n—=1)B(¢Z)a+ (EB)(9Z)a)ln(Y) + [~200B(6*Y ) — 26a3(n — 2)(4Y )
+a(’Y)a+ aln = 2)(pY B) + 6(a” + B2)(¢Y )a + 6(n — 2)(a” + 52)(Y )
—B(eY)a = B(n = 2)(YB)In(Z) — (Za)(°Y ) — (n — 2)(ZB)(¢Y B)
—(ZB)(¢Y)a — B(n —2)(Y B).

If « = 0 and 8 = constant in (7.6), we get

(7.7) S(Y,Z) = ag(Y,Z) +bn(Y)n(Z),

where a — _[(n—1)64+(n—2>62(ﬂé>+(n—1)63—(gz(—ﬁggﬁ(ﬁs—1)+(n—1)5ﬁ+(n—2)(gmd6)2]
and

b= —[(RRBE+O+H(n—2B"~(n=2)0(gradf)’|

B(B+4)
This result show that the manifold under the consideration is an 7n-Einstein

manifold. Thus we have the following theorem:

Theorem 7.1. An n-dimensional d-Lorentzian trans-Sasakian manifold M with
respect to a semi-symmetric metric connection V satisfying P.S = 0, then 6-
Lorentzian trans-Sasakian manifold M is an n-FEinstein manifold if a« = 0 and
B = constant.

8. Weyl Conformal Curvature Tensor on J/-Lorentzian Trans-Sasakian
Manifold with a Semi-symmetric Metric Connection

The Weyl conformal curvature tensor C' of type (1,3) of M an n-dimensional
d-Lorentzian trans-Sasakian manifold a with semi-symmetric metric connection V
is given by [16]
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(81) C(X,Y)Z=R(X,Y)Z

W i % [S(Y,2)X — S(X,Z2)Y +g(Y, Z2)QX — g(X, Z)QY]
+ m[g(l/, Z)X —g(X, Z)Y],

where @ is the Ricci operator with respect to the semi-symmetric metric connection
V. Let M ba an n-dimensional é-Lorentzian trans-Sasakian manifold. The Weyl
conformal curvature tensor C' of M with respect to the semi-symmetric metric
connection V is defined in equation (8.1).

Now, taking inner product with U in (8.1), we get

1
W[S(KZ)Q(X»U)

—S(X, 2)9(Y,U) +9(Y, Z2)9(QX,U) — g(X, Z)g(QY, U)]

(8:2) 9(C(X,Y)Z,U) =g(R(X,Y)Z,U) -

t oD 9 29X U) — (X, 2)g (Y. U)]:
Using (2.4), (3.2), (3.11), (3.12) and (3.14) in (8.2), we get

(8.3) @Mﬂ%ﬂﬂ=ﬂﬂKYﬂﬂU—@%5WMZMXﬁ)

- S(X,2)g(Y,U) +g(Y, 2)9(QX,U) — g(X, Z)g(QY, U)]

P T 1 D9, U) — 9(X, 2)g(Y, U]

where g(C(X,Y)Z,U) = C(X,Y,Z,U)and R(X,Y)Z,U) = C(X,Y, Z,U) are Weyl
curvature tensor with respect to the semi-symmetric metric connection respectively,
we have

(8.4) CX,Y,Z,U)=C(X,Y,Z,U),

where

85)  CXLY.ZU) = g(RX.V)ZU) = =[SV 2)a(X. )
= S(X,2)9(Y,U) + g(Y, 2)9(QX,U) — 9(X, Z2)g(QY, U)]
+@f§@f5mxmwxw—AXJMMUw

Theorem 8.1. The Weyl conformal curvature tensor of a §-Lorentzian trans-
Sasakian manifold M with respect to a metric connection is equal to the Weyl cur-
vature of §-Lorentzian trans-Sasakian manifold with respect to the semi-symmetric
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metric connection.

9. /-Lorentzian Trans-Sasakian Manifold with Weyl Conformal Flat Con-
ditions with a Semi-symmetric Metric Connection

Let us consider that the -Lorentzian trans-Sasakian manifold M with respect
to the semi-symmetric metric connection is Weyl conformally flat, that is C' = 0.
Then from equation (8.1), we get

9.1) R(XY)Z= i 5. 2)X - S(x.2)y
49V, 2)QX — g(X, 2)QV]
Ty YA —gX. 2],

Now, taking the inner product of equation (9.1) with U. then we get

(92) g(R(X,Y)Z,U) = [S(Y,Z)g(X,U) — S(X, Z)g(Y.U)

1
(n—2)

+g(Y. Z)g(QX U) — g(X, 2)g(QY, U)]

~ D gy Y- D)e(X.U) —g(X. 2)g(Y. U))

Using equations (2.4), (3.2), (3.11), (3.12) and (3.14) in equation (9.2), we get

1
(n—2)
+9(Y, 2)9(QX,U) — 9(X, Z)g(QY, U)]

- mw(lﬂ 2)9(X,U) — g(X, Z)g(Y,U)].

93)  9(R(X,Y)Z,U) = [S(Y,2)g9(X,U) = 5(X, Z)g(Y,U)

Putting X = U = ¢ in equation (9.3) and using (2.2), (2.3) and (2.4), we get

(9.4) o(RIEY)Z.E) = g BS(Y. 2) ~ n(Y)S(€. 2)

+9(Y, 2)5(¢,€) — on(2)5(Y,€)]

_ m[(Sg(Y, Z) = n(Y)n(Z)],

where ¢(QY,Z) = S(Y, Z).
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Now, using equations (2.13), (2.14) and (2.16), we get

(95) S(Y,Z) =[(6(a® + B%) — (£8)] + l9(Y, Z)

(n—1)
+[0(n — 4)(&B) + n(a® + B2) — g(n = DIn(Y)n(Z)
— [20aB(n = 2) + (n = 2)(E)]g(9Y, 2)
—[6(06Z)a +6(25)(n = 2)n(Y) = [6(¢Y )a + 6(n = 2)(Y 5)In(Z).
If « = 0 andd 8 = constant in (7.6), we get

or
(n—1)

r

00 50,2) =[5+

l9(Y, Z) + [np* -

In(Y)n(2).

Therefore
S(Y,Z) =ag(Y,Z) + n(Y)n(Z),

where a = [03% + (nzl)] and b = [n3? — (n‘sjl)]. This shows that M is an n-Einstein
manifold. Thus we can state the following theorem:

Let M ba an n-dimensional Weyl conformally flat §-Lorentzian trans-Sasakian
manifold with respect to the semi-symmetric metric connection V is an n-Einstein

manifold if @ = 0 and S =constant. Now, taking equation (8.1)

9.7 C(X,Y)Z=R(X,Y)Z
1

[S(YV.2)X — S(X, 2)Y +4(Y,Z2)QX — g(X, 2)QY]

(-2
+ m[g(K 2)X —9(X, 2)Y].
Using (2.20), (3.2), (3.11), (3.12) and (3.14) in equation (9.7), we get

9.8)  C(X,Y)Z=C(X,Y)Z +d[g(X, 2)Y — g(Y, Z)X]
+ (6 +B)(X)g(Y, Z2) —n(Y)g(X, Z)]¢
— (B0 = n(Z2)In(Y)X —n(X)Y] + alg(¢X, Z)Y
— (6, 2)X — g(Y, Z)6X + g(X, Z)6V] + (H%Q)
(B6 =) (n —=2)n(Y)n(Z) — ((0)(n —2) + B)g(Y, Z) X
+a(n —2)g(¢Y, Z)X + ((6)(n — 2) + B)g(X, 2)Y
+ (80 = 1)(n = 2)n(X)n(2)Y — a(n —2)g(¢X, Z2)Y
—((0)(n —=2) + B)g(Y, Z)X 4 (B + 8)(n — 2)g(Y, Z)n(X)E
a(n —2)g(Y, Z)pX + ((0)(n —2) + B)g(X, Z)Y
= (B+0)(n—2)9(X, Z)n(Y)§ — an — 2)g(X, Z)¢Y]
_Bti+(n—2)

(n—2) 9V, 2)X — g(X, 2)Y].
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Let X and Y are orthogonal basis to £. Putting Z = £ and using (2.1), (2.2) and
(2.4) in (9.8), we get B
C(X,Y)E = O(X,Y)E.

Theorem 9.1. An n-dimensinal §-Lorentzian trans-Sasakian manifold M is Weyl
&-conformally flat with respect to the semi-symmetric metric connection if and only
if the manifold is also Weyl &-conformally flat with respect to the metric connection
provided that the vector fields are horizontal vector fields.

10. n-Ricci Solitons and Ricci Solitons in §-Lorentzian Trans-Sasakian
Manifold with a Semi-symmetric Metric Connection

Let M be 3-dimensional §-Lorentzian trans-Sasakian manifold with a semi-
symmetric metric connection and V be pointwise collinear with £ i.e. V = b€,
where b is a function. Then consider the equation [9]

(10.1) Lyg+25+2\g+2un®n=0,

where Ly is the Lie derivative operator along the vector field V, S is the Ricci
curvature tensor field of the metric g and A and p are real constants. Then equation
(10.1) implies,

(10.2)  g(Vxb&,Y) 4+ g(Vyb&, X) 4+ 25(X,Y) + 20g(X,Y) + 2un(X)n(Y) = 0,

(10.3) bg(Vx€,Y) + (Xb)n(Y) +bg(Vy €, X) + (Yb)n(X)
+25(X,Y) +20g(X,Y) + 2un(X)n(Y) = 0.
Using (3.4) in (10.3), we get

(10.4) bg[—(1+08)X — (1+08)n(X)§ — bad X, Y]+ (Xb)n(Y)
+0g[=(1+0B)Y — (14 68)n(Y)§ — dagY, X] + (Yb)n(X)
+25(X,Y) +20g9(X,Y) + 2un(X)n(Y) = 0.

(10.5)  =2b(1+6p3)g(X,Y) = 2b(1 + 6B8)n(Y)n(X) + (X0)n(Y) + (Y)n(X)

+25(X,Y) +20g9(X,Y) + 2un(X)n(Y) = 0.

With the substitution of ¥ with £ in (10.5) and using (3.21) for constants « and 3,
it follows that
(10.6) (X0) + (€0)n(X) — 4b(1 +65)n(X)

+2[2(0” + 52 — 8(68)) — 208)n(X)

+22n(X) +2un(X) = 0.

557
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(10.7) (Xb) + (£b)n(X)+

(—4b(1 + 88) +2(2(a? + B2 — (¢8)) — 268 + 27 + 2uln(X) = 0.
Again replacing X = ¢ in (10.7), we obtain

(10.8) €b = —[—2b(1 4 683) 4 (2(® 4+ B% = 6(£B)) — 08 + A +
Putting (10.8) in (10.7), we obtain
(10.9) db = [2b(1 + 0B) — (2(e® + % = 6(£B)) — 68 — A — pln.

By applying d on (10.9), we get

(10.10) [2b(1 4+ 68) — (2(a® + B2 — 6(€B)) — 63 — A — pldn = 0.
Since dn # 0 from (10.10), we have

(10.11) [2b(1 +68) — (2(a® + B2 — 6(€B)) — 68 — A — p] = 0.

By using (10.9) and (10.11), we obtain that b is a constant. Hence from (10.5) it is
verified

(10.12) S(X,Y) =[b(1+0B) = AJg(X,Y) + [b(1 + 653) — pn(X)n(Y).
which implies that M is an 7-Einstien manifold. This lead to the following:

Theorem 10.1. In a 3-dimensional 6-Lorentzian trans-Sasakian manifold with a
semi-symmetric metric connection, the metric g is an n-Ricci soliton and V is a
positive collinear with £, then V is a constant multiple of & and g is an n-Einstien
manifold of the form (10.12) and n-Ricci soliton is expanding or shrinking according
as the following relation is positive and negative

(10.13) X = —[2b(1 + 36) — (2(a? + B2 — 6(¢8)) — 88 — 1]

For = 0, we deduce equation (10.12)

(10.14) S(X,Y) = [b(1+08) = Alg(X,Y) + [b(1 + 63)In(X)n(Y).
Now, we have the following corollary:

Corollary 10.1. In a 3-dimensional 0-Lorentzian trans-Sasakian manifold with a
semi-symmetric metric connection, the metric g is a Ricci soliton and V' is a positive
collinear with £, then V is a constant multiple of £ and g is an n-Finstien manifold
and Ricci soliton is shrinking according as the following relation is negative. For
w=20, (10.18) reduce to

(10.15) A= —[2b(1+08) — (2(a® 4 B2 — 6(¢B)) — 48]
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Here is an example of n-Ricci soliton on J-Lorentzian trans-Sasakian manifold
with a semi-symmetric metric connection.

Example 10.1. We consider the three dimensional manifold M = [(x,y, z) € R? |
z # 0], where (z,y,z) are the Cartesian coordinates in R®. Choosing the vector

fields
0 0 0

—, e=z—, e3=—2—,
or’ P Tay 7P 9z

which are linearly independent at each point of M. Let g be the Riemannian metric
define by

€1 =z

gle1,e3) = glez, e3) = g(ez,e2) =0, gler,e1) = glea, e2) = g(es, e3) =6,
where § = +1. Let n be the 1-form defined by n(Z) = eg(Z, e3) for any vector
field Z on TM. Let ¢ be the (1,1) tensor field defined by ¢(e1) = —ea, P(ea) =
e1, ¢(e3) = 0. Then by the linearity property of ¢ and g, we have
$*Z =Z+n(Z)es, nles) =1 and g(¢Z,oW) = g(Z, W) = dn(Z)n(W)
for any vector fields Z, W on M.

Let V be the Levi-Civita connection with respect to the metric g. Then we

have
le1, e2] =0, le1, e3] = dex, le2, e3] = dea.

The Riemannian connection V with respect to the metric g is given by
29(VxY,2) = Xg(Y,2) +Yg(Z, X) - Zg(X,Y)

From above equation which is known as Koszul’s formula, we have

(10.16) Veleg = 561, v€263 = 562, v6363 = 0,
Ve e2 =0, Ve,2 = —des, Vesea =0,
Ve, €1 = —des, Ve,e1 =0, Vese1 =0.

Using the above relations, for any vector field X on M, we have
Vx§=6(X —n(X)§)

for £ € e3, a = 0 and 8 = 1. Hence the manifold M under consideration is an
0-Lorentzian trans Sasakian of type (0, 1) manifold of dimension three.

Now, we consider this example for semi-symmetric metric connection from (2.9)
and (10.14), we obtain:

o
w
Il

(10.17) ere3 = (1+6)ey, Ve,e3 = (1 +d)ea, \Y
e1€2 = 0, 66262 = *(1 + 6)63, ?ege
er€1 = —(1+d)es, Ve,e1 =0, v

< < <
I
o o o

a

w
]
—
Il
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Then the Riemannian and the Ricci curvature tensor fields with respect to the
semi-symmetric metric connection are given by:

R(el, 62)62 = —(1 + 5)2617 R(el, 63)63 = —5(1 + 6)62, R(eg, 61)61 = —(1 + 5)262,

R(GQ, 63)63 = —6(1 + 5)62, R(eg, 61)61 = (5(1 + 5)63, R(eg, 62)62 = —(5(1 + 5)63,

3(61761) = 5(62,62) = —(]. +5)(1 +25), S(63,€3,) = 25(1 + (S)

From (10.14), for A = % and p = —(1+0)(1 + 36), the data (g,&, A\, p) is an
n-Ricci soliton on (M, ¢,&,n, g) which is expanding.
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