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Abstract. In the present paper, we investigate the upper bounds on third order Hankel

determinants for certain class of close-to-convex functions in the unit disk. Furthermore,

we obtain estimates of the Zalcman coefficient functional for this class.

1. Introduction

Let A be the class of functions analytic in the unit disk D := {z ∈ C : |z| < 1}
of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n.

We denote by S the subclass of A consisting of univalent functions.
A function f ∈ A is said to be starlike of order α (0 ≤ α < 1), if it satisfies

<
(
zf ′(z)

f(z)

)
> α (z ∈ D).
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We denote by S∗(α) the class of starlike functions of order α. In particular, S∗ =:
S∗(0).

Recall that a function f ∈ A is close-to-convex in D if it is univalent and the
range f(D) is a close-to-convex domain, i.e., the complement of f(D) can be written
as the union of nonintersecting half-lines. A normalized analytic function f in D
is close-to-convex in D if there exists a function g ∈ S∗, such that the following
inequality

(1.2) <
(
zf ′(z)

g(z)

)
> 0

(
z ∈ D

)
holds. Denote C by the class of close-to-convex functions. We refer to [8, 16, 17, 28]
for discussion and basic results on close-to-convex functions.

In [11], Gao and Zhou investigated the following class of close-to-convex func-
tions.

Definition 1.1. Suppose that f ∈ A is analytic in D of the form (1.1). We say
that f ∈ Ks, if there exists a function g ∈ S∗(1/2), such that

(1.3) <
(

z2f ′(z)

g(z)g(−z)

)
< 0

(
z ∈ D

)
.

Let

(1.4) g(z) = z +

∞∑
n=2

bnz
n ∈ S∗(1/2)

(
z ∈ D

)
and

(1.5) G(z) = −g(z)g(−z)
z

= z +

∞∑
n=2

B2n−1z
2n−1 (

z ∈ D
)
.

Then G(−z) = G(z), so G(z) is an odd starlike function. It is well-known that

(1.6) |B2n−1| ≤ 1 (n = 2, 3, · · · ).

Substituting the series expressions of g(z), G(z) in (1.4) and (1.5), and using (1.6),
then the following result holds.

Theorem A.([11]) Let g ∈ S∗(1/2). Then for n ≥ 2,

(1.7) |B2n−1| =
∣∣2b2n−1 − 2b2b2n−2 + · · ·+ (−1)n2bn−1bn+1 + (−1)n+1b2n

∣∣ ≤ 1.

The estimates are sharp, with the extremal function given by g(z) = z/(1− z).

Theorem B.([11]) Let f ∈ Ks be of the form (1.1). Then

(1.8) |an| ≤ 1 (n = 2, 3, · · · ).
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The estimates are sharp, with the extremal function given by f(z) = z/(1− z).

Noonan and Thomas [24] studied the Hankel determinant Hq,n(f) defined as

Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣ (q, n ∈ N).

Problems involving Hankel determinants Hq,n(f) in geometric function theory
originate from the work of such authors as Hadamard, Polya and Edrei (see [7, 9]),
who used them in study of singularities of meromorphic functions. For example,
Hankel determinants can be used in showing that a function of bounded character-
istic in D, i.e., a function which is a ratio of two bounded analytic functions with its
Laurent series around the origin having integral coefficients, is rational [5]. Pom-
merenke [25] proved that the Hankel determinants of univalent functions satisfy the

inequality |Hq,n(f)| < Kn−(
1
2+β)q+

3
2 , where β > 1/4000 and K depends only on

q. Furthermore, Hayman [12] proved a stronger result for areally mean univalent
functions, i.e., he showed that H2,n(f) < An1/2, where A is an absolute constant.

We note that H2,1(f) is the well-known Fekete-Szegő functional, see [10, 16, 17].
The sharp upper bounds on H2,2(f) were obtained in the articles [2, 14, 15, 18] for
various classes of functions.

By the definition, H3,1(f) is given by

H3,1(f) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ .
Note that for f ∈ A, a1 = 1 so that

H3,1(f) = a3(a2a4 − a23) + a4(a2a3 − a4) + a5(a3 − a22),

by the triangle inequality, we have

|H3,1(f)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|.

Obviously, the case of the upper bound of H3,1(f) is much more difficult than
the cases of H2,1(f) and H2,2(f). Recently, Prajapat et al.[26] studied the upper
bounds on the Hankel determinants for the class of close-to-convex functions.

Theorem C. Let f ∈ C be of the form (1.1). Then

∣∣a2a3 − a4∣∣ ≤ 3,
∣∣a2a4 − a23∣∣ ≤ 85

36
and

∣∣H3,1(f)
∣∣ ≤ 289

12
.
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For further information about the upper bounds of the third Hankel determi-
nants for some classes of univalent functions, see e.g. [1, 3, 6, 27, 29].

In 1960, Lawrence Zalcman posed a conjecture that the coefficients of S satisfy
the sharp inequality

|a2n − a2n−1| ≤ (n− 1)2 (n ∈ N),

with equality only for the Koebe function k(z) = z/(1− z)2 and its rotations. We
call Jn(f) = a2n − a2n−1 the Zalcman functional for f ∈ S. Clearly, for f ∈ S, we
have |J2(f)| = |H2,1(f)|. The Zalcman conjecture was proved for certain special
subclasses of S in [4, 19, 22, 23].

In the present investigation, our purpose is to develop similar results on the
Hankel determinants in the context the close-to-convex functions f ∈ Ks. Further-
more, the upper bounds to the Zalcman functional for this class are obtained.

2. Preliminary Results

Denote by P the class of Carathéodory functions p normalized by

(2.1) p(z) = 1 +

∞∑
n=1

cnz
n and <

(
p(z)

)
> 0 (z ∈ D).

The following results are well known for functions belonging to the class P.

Lemma 2.1.([8]) If p ∈ P is of the form (2.1), then

(2.2) |cn| ≤ 2 (n ∈ N).

The inequality (2.2) is sharp and the equality holds for the function

φ(z) =
1 + z

1− z
= 1 + 2

∞∑
n=1

zn.

Lemma 2.2.([13]) If p ∈ P is of the form (2.1), then the sharp estimate (2.3) is
valid.

(2.3) |cn − µckcn−k| ≤ 2 (n, k ∈ N, n > k; 0 ≤ µ ≤ 1).

Lemma 2.3.([20, 21]) If p ∈ P is of the form (2.1), then there exist x, z such that
|x| ≤ 1 and |z| ≤ 1,

(2.4) 2c2 = c21 + (4− c21)x,

and

(2.5) 4c3 = c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z.
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3. The Upper Bounds of the Hankel Determinant

In this section, we first give an upper bound of the functional
∣∣a2a3 − a4∣∣ for

functions f ∈ Ks.

Theorem 3.1. Let f ∈ Ks be of the form (1.1). Then∣∣a2a3 − a4∣∣ ≤ 1

2
.

Proof. Let g be given by (1.4), and

(3.1) p(z) =
z2f ′(z)

−g(z)g(−z)
= 1 + c1z + c2z

2 + · · · (z ∈ D).

Then, we have <
(
p(z)

)
> 0, and

(3.2) z2f ′(z) = −g(z)g(−z)p(z).

Substituting the expansions of f(z), g(z) and p(z) in (3.2), and equating the coef-
ficients, we obtain

(3.3)


a2 = 1

2c1,
a3 = 1

3

(
c2 + 2b3 − b22

)
,

a4 = 1
4

[
c3 +

(
2b3 − b22

)
c1
]
.

Hence, by using the above values of a2, a3 and a4 from (3.3), and the relations of
(2.4) and (2.5) we obtain, for some x and z such that |x| ≤ 1 and |z| ≤ 1,

∣∣a2a3 − a4∣∣ =
1

12

∣∣− (2b3 − b22)c1 + 2c1c2 − 3c3
∣∣

=
1

48

∣∣c31 − 4(2b3 − b22)c1 + (4− c21)
[
− 2c1x+ 3c1x

2 − 6(1− |x|2)z
]∣∣.

(3.4)

By Lemma 2.1, we have |c1| ≤ 2. By setting c := c1, we may assume without
loss of generality that c ∈ [0, 2]. Thus, by applying the triangle inequality in (3.4)
with µ = |x|, we obtain

∣∣a2a3 − a4∣∣ ≤ 1

48

{
c3 + 4c+ (4− c2)

[
3(c− 2)µ2 + 2cµ+ 6

]}
=: F (c, µ).

Let
ϕ(µ) = 3(c− 2)µ2 + 2cµ+ 6 (c ∈ [0, 2]; µ ∈ [0, 1]).

In particular, for the case of c = 2, we have

ϕ(µ) = 4µ+ 6 ≤ ϕ(1) = 10.
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For the case of 0 ≤ c < 2, then ϕ(µ) is a quadratic function of µ ∈ [0, 1], and we
can get

ϕ(µ) = 3(c− 2)

(
µ− c

3(2− c)

)2

+
c2 − 18c+ 36

3(2− c)
.

If µ0 = c
3(2−c) ≤ 1, that is, 0 ≤ c ≤ 3

2 , we obtain

ϕ(µ) ≤ ϕ(µ0) =
c2 − 18c+ 36

3(2− c)
.

If µ0 = c
3(2−c) ≥ 1, that is, 3

2 ≤ c < 2, we get

ϕ(µ) ≤ ϕ(1) = 5c.

Thus, we have

F (c, µ) ≤ G(c) =

{
G1(c) = 1

36 (c3 − 4c2 + 3c+ 18) (0 ≤ c ≤ 3/2),
G2(c) = 1

12 (−c3 + 6c) (3/2 ≤ c ≤ 2).

For G1(c), we have

G′1(c) =
1

36
(3c2 − 8c+ 3) and G′′1(c) =

1

18
(3c− 4).

Let

C0 =
4−
√

7

3
∈
[
0,

3

2

]
,

then, we obtain
G′1(C0) = 0 and G′′1(C0) < 0.

For G2(c), we have

G′2(c) =
1

4
(2− c2) < 0,

(
3

2
≤ c ≤ 2

)
.

Obviously, G2(c) is an decreasing function of c on [3/2, 2] and, hence,

G2(c) ≤ G2

(
3

2

)
=

15

32
.

Since G(c) is a continuous function of c on the closed interval [0, 2], it follows
that ∣∣a2a3 − a4∣∣ ≤ G(c) ≤ max

{
G1(0), G1(C0), G2

(
3

2

)}
=

1

2
. 2

Now, we are ready to give an upper bound of
∣∣a2a4 − a23∣∣ for functions f ∈ Ks.
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Theorem 3.2. Let f ∈ Ks be of the form (1.1). Then∣∣a2a4 − a23∣∣ ≤ 1.

Proof. Using the values of a2, a3 and a4 from (3.3), and using (2.4) and (2.5) for

some x and z such that |x| ≤ 1 and |z| ≤ 1, we get

a2a4 − a23 =
1

288

{
c41 + (4− c21)

[
2c21x− (32 + c21)x2 + 18(1− |x|2)c1z

]}
− 2

9

(
2b3 − b22

)(
c2 −

9

16
c21
)
− 1

9

(
2b3 − b22

)2
.

By Lemma 2.1, we may assume that |c1| = c ∈ [0, 2]. By applying Theorem A,
Lemma 2.1, Lemma 2.2 and the triangle inequality in above relation with µ = |x|,
we obtain∣∣a2a4 − a23∣∣ ≤ 1

288

{
c4 + (4− c2)

[
(c2 − 18c+ 32)µ2 + 2c2µ+ 18c

]}
+

5

9
.

Let

ψ(µ) = (c2 − 18c+ 32)µ2 + 2c2µ+ 18c, S(c, µ) =
1

288

[
c4 + (4− c2)ψ(µ)

]
.

Therefore,
ψ′(µ) = 2(c− 2)(c− 16)µ+ 2c2 ≥ 0,

which implies that ψ(µ) is an increasing function of µ on [0, 1]. Hence, we have

ψ(µ) ≤ ψ(1) = 3c2 + 32,

which yields that

S(c, µ) ≤ S(c, 1) =
1

144

(
− c4 − 10c2 + 64

)
≤ 4

9
, (0 ≤ c ≤ 2).

Thus, we obtain the bound of |a2a4 − a23|. 2

Let f ∈ Ks. Then using the above results in theorem B, Theorem 3.1 and
Theorem 3.2, together with the known inequality |a22− a3| ≤ 1 (see [16]), we obtain
the upper bound of the third Hankel determinant for close-to-convex functions f ∈
Ks.

Theorem 3.3. Let f ∈ Ks be of the form (1.1). Then∣∣H3,1(f)
∣∣ ≤ 5

2
.
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Remark 3.1. In Theorem 3.1, Theorem3.2 and Theorem 3.3, we have obtained
the upper bounds for the Hankel determinant. However, these results are far from
sharp.

4. The Upper Bounds of the Zalcman Functional

In this section, we consider the Zalcman functional for functions f ∈ Ks.

Theorem 4.1. Let f ∈ Ks be of the form (1.1). Then∣∣a22 − a3∣∣ ≤ 1,
∣∣a23 − a5∣∣ ≤ 34

45
,

and ∣∣a2n − a2n−1∣∣ ≤ { 2− 4(n−1)
n2 (n = 2k ≥ 4),

2− 4
n (n = 2k + 1 ≥ 5).

Proof. Let g(z), G(z) and p(z) be given by (1.4), (1.5) and (3.1), respectively.
Then, we have

zf ′(z) = p(z)G(z) (z ∈ D).

Comparing the coefficients of two sides of this equation, we obtain

an =

{
1
2k

(
c2k−1B1 + c2k−3B3 + · · ·+ c1B2k−1

)
(n = 2k),

1
2k+1

(
c2kB1 + c2k−2B3 + · · ·+ c0B2k+1

)
(n = 2k + 1),

where k ∈ N and B1 = c0 = 1.
For the case of n = 2k, we have∣∣a2n − a2n−1∣∣ =

∣∣a4k−1 − a22k∣∣
=

∣∣∣∣ 1

4k − 1

(
c4k−2B1 + c4k−4B3 + · · ·+ c2kB2k−1 + c2k−2B2k+1 + · · ·+ c0B4k−1

)
− 1

4k2

(
c2k−1B1 + c2k−3B3 + · · ·+ c1B2k−1

)2∣∣∣∣
=

∣∣∣∣ 1

4k − 1

(
c4k−2 −

4k − 1

4k2
c22k−1

)
+

B3

4k − 1

(
c4k−4 −

4k − 1

2k2
c2k−1c2k−3

)
+ · · ·+ B2k−1

4k − 1

(
c2k −

4k − 1

2k2
c2k−1c1

)
+

1

4k − 1

(
c2k−2B2k+1 + · · ·+ c2B4k−3 + c0B4k−1

)
− 1

4k2

(
c2k−3B3 + · · ·+ c1B2k−1

)2∣∣∣∣.
If k = 1, using Theorem B and Lemma 2.2, we have∣∣a22 − a3∣∣ =

∣∣∣∣13
(
c2 −

3

4
c21

)
+

1

3
B3

∣∣∣∣ ≤ 1

3

∣∣∣∣c2 − 3

4
c21

∣∣∣∣+
1

3

∣∣B3

∣∣ ≤ 1.
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If k ≥ 2, we note that

4k − 1

4k2
≤ 1 and

4k − 1

2k2
≤ 1 (k ≥ 2),

by Theorem B, Lemma 2.1, Lemma 2.2 and the triangle inequality, we obtain∣∣a2n − a2n−1∣∣ ≤ 2k

4k − 1
+

2(k − 1) + 1

4k − 1
+

[2(k − 1)]2

4k2
= 2− 4(n− 1)

n2
.

For the case of n = 2k + 1, we have∣∣a2n − a2n−1∣∣ =
∣∣a4k+1 − a22k+1

∣∣
=

∣∣∣∣ 1

4k + 1

(
c4kB1 + c4k−2B3 + · · ·+ c2k+2B2k−1

+ c2kB2k+1 + c2k−2B2k+3 + · · ·+ c0B4k+1

)
− 1

(2k + 1)2

(
c2kB1 + c2k−2B3 + · · ·+ c2B2k−1 + c0B2k+1

)2∣∣∣∣
=

∣∣∣∣ 1

4k + 1

(
c4k −

4k + 1

(2k + 1)2
c22k

)
+

B3

4k + 1

(
c4k−2 −

2(4k + 1)

(2k + 1)2
c2kc2k−2

)
+ · · ·+ B2k−1

4k + 1

(
c2k+2 −

2(4k + 1)

(2k + 1)2
c2kc2

)
+

(
1

4k + 1
− 2

(2k + 1)2

)
c2kB2k+1

+
1

4k + 1

(
c2k−2B2k+3 + · · ·+ c2B4k−1 + c0B4k+1

)
− 1

(2k + 1)2

(
c2k−2B3 + · · ·+ c2B2k−1 + c0B2k+1

)2∣∣∣∣.
If k = 1, using Theorem B, Lemma 2.1 and Lemma 2.2, we have∣∣a23 − a5∣∣ ≤ 1

5

∣∣∣∣c4 − 5

9
c22

∣∣∣∣+

∣∣∣∣15 − 2

9

∣∣∣∣∣∣c2B3

∣∣+
1

5

∣∣B5

∣∣+
1

9

∣∣B2
3

∣∣ ≤ 34

45
.

If k ≥ 2, we note that

1

4k + 1
− 2

(2k + 1)2
≥ 0,

4k + 1

(2k + 1)2
≤ 1 and

2(4k + 1)

(2k + 1)2
≤ 1 (k ≥ 2),

by Theorem B, Lemma 2.1, Lemma 2.2 and the triangle inequality, we obtain∣∣a2n − a2n−1∣∣ ≤ 2k

4k + 1
+

(
2

4k + 1
− 4

(2k + 1)2

)
+

2k − 1

4k + 1
+

(2k − 1)2

(2k + 1)2
= 2− 4

n
.

This completes the proof. 2
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