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Abstract. In this paper, we present a symbolic formulation of the error obtained due

to an approximation of a given function by the mixed-interpolating function. Using the

proposed symbolic method, we compute the error evaluation operator as well as the error

estimation at any arbitrary point. We also present an algorithm to compute an approxi-

mation of a function by the mixed interpolation technique in terms of projector operator.

Certain examples are presented to illustrate the proposed algorithm. Maple implementa-

tion of the proposed algorithm is discussed with sample computations.

1. Introduction

In this paper, we focused on a mixed interpolation problem of the form

(1.1) f̃s(x) = aU1(x) + bU2(x) +

s−2∑
i=0

cix
i, s ≥ 2,

such that

(1.2) θf̃s = θf,

where U1(x) and U2(x) are given functions, Θ = {θ0, . . . , θs} is a set of bounded
functionals of a normed linear space S = C∞[a, b], Σ = {θf : θ ∈ Θ} ⊂ R, and s is

the order of interpolating function f̃s(x). We call the tuple (M,Θ) an interpolation
problem, where M = {U1, U2, 1, . . . , x

s−2} ⊂ S and Θ ⊂ S∗ are the finite dimensional
basis and linearly independent set respectively. The interpolation problem (M,Θ) is
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said to be regular if it has unique solution, otherwise it is called singular. Given any
function f(x) can be approximate by the mixed interpolation of the form (1.1) and
the error induced due to an approximation of the given function can be formulated
in symbolic manner.

De Meyer et al. (1990) derived a formula for the mixed interpolation of the
form (1.1) with fixed U1(x) = cos(kx) and U2(x) = sin(kx) correspondence to fi-
nite difference formulae for polynomial interpolation with uniformly spaced nodes
(general conditions) in [6] and the error term is discussed in [7]. Chakrabarti et
al. (1996) revised and extended the idea of De Meyer by replacing cos(kx) and
sin(kx) by U1(kx) and U2(kx) respectively with uniformly spaced general conditions.
Chakrabarti presented a closed form of the error term by choosing an appropriate
differential operator [1]. Coleman (1998) presented an algorithm for mixed interpo-
lation of the form (1.1) and derived both Newtonian and Lagrangian formulae for
the interpolant for arbitrarily chosen distinct nodes [2]. However, the authors con-
sidered the mixed interpolation of the form (1.1) and presented the error estimation
with uniformly or arbitrary chosen general conditions. Thota and Kumar (2016)
discussed in [11] about the formulation of the mixed interpolation of the form (1.1)
with integral conditions at arbitrary nodes for a special case U1(x) = cos kx and
U2(x) = sin kx, k > 0 is a given parameter, and in [10, 12, 13], a symbolic method for
polynomial interpolation with Stieltjes conditions is discussed. This paper presents
a symbolic formulation of the error estimation due to an approximation of a given
function by the mixed interpolation of the form (1.1) with Stieltjes conditions (the
combination of general, differential and integral conditions). In literature survey,
it is seen that there is no symbolic method available for the error estimation of
a mixed interpolation problem with Stieltjes functionals. Therefore, we develop a
symbolic algorithm for the error estimation in this paper.

The error due to an approximation of a given function f(x) by the mixed inter-

polant f̃s(x) is defined as

(1.3) Es(f,M,Θ) = f(x)− f̃s(x).

The matrix [12], related Stieltjes conditions, given below

(1.4) E =


θ0U1 θ0U2 θ01 · · · θ0x

s−2

θ1U1 θ1U2 θ11 · · · θ1x
s−2

...
...

...
. . .

...
θsU1 θsU2 θs1 · · · θsx

s−2


is called evaluation matrix of Θ and M . Denote the determinant of evaluation
matrix by D = det(E) for simplicity, and if

B =
f(x) N
f†(x) E

,

where N = (U1, U2, 1, . . . , x
s−2) and f†(x) = (θ0f, . . . , θsf)T are row and column

vectors respectively, then the error formula in equation (1.3) can be expressed as a
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quotient of B and D [2] as follows

Es(f,M,Θ) =
B

D
.

In other words, as a particular case of a general remainder theorem [3, p. 75], this
quotient represents the linear combination of {f(x), U1, U2, 1 . . . , x

s−2} in which the
coefficient of f(x) is unity.

The following section presents a symbolic formulation of the error estimation
as defined in equation (1.3) over algebras.

2. Symbolic Formulation of Error Estimation

In order to formulate the error estimation, we need to express the error
Es(f,M,Θ) in a closed form. This can be achieved by selecting a differential op-
erator T whose fundamental system is M = {U1, U2, 1, x, . . . , x

s−2} and such a
differential operator is as follows [1, 2]:

(2.1) T =
Ds

Ds+1

ds+1

dxs+1
− D′s

Ds+1

ds

dxs
+

ds−1

dxs−1
,

where Ds =
dsU2

dxs
dsU1

dxs

ds−1U2

dxs−1
ds−1U1

dxs−1

. Hence the function f̃s(x) satisfies the differential

equation
T f̃s = 0

and the error E(f,M,Θ) satisfies

TE(f,M,Θ) = Tf and

θE(f,M,Θ) = 0.(2.2)

Now the goal is to find an operator T † such that TT † = T and ΘT † = 0. The
operator T † is called an error evaluation operator. Using the error evaluatation
operator, we can calculate the error term E(f,Θ,Σ) as T †f . The key to find such
operator for (2.2) is the Moore-Penrose inverse (or just pseudoinverse for short)
defined as follows. One of the advantages of Moore-Penrose inverse is that provides
us a alternate inverse of a non-bijective linear operator in any linear space.

Definition 2.1.([4, 8]) Let T : S → S be a linear operator. We say T has a
Moore-Penrose inverse if and only if there is an operator G : S→ S such that

TGT = T,(2.3)

GTG = G,(2.4)

GT = 1− P,(2.5)

TG = Q,(2.6)
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where P and Q are the projectors to the kernel and range of T respectively. Fur-
thermore, if K and R are the compliments of kernel and range respectively, then
Ker(G) = R and Range(G) = K.

If we set Q = 1 in Definition 2.1, i.e. G is right inverse of T such that TG = 1,
then the equations (2.3) and (2.4) are clearly follow from equation (2.6). Now
equation (2.5) is to be consider, in which P is a projector onto null space M of
T involving the Stieltjes functionals. It is shown by Rosenkranz et al. in [9] over
integro-differential algebras that, if T♦ is any right inverse (irrespective of Stieltjes
functionals) of T then

G = (1− P )T♦

is the Green’s operator for a regular boundary problem

TE(f,M,Θ) = g

θE(f,M,Θ) = 0,

where g is a forcing function. Since T♦ is a right inverse and from Definition 2.1,
one can observed that TT♦ = 1 and T♦T = 1− P . Now

(2.7) E(f,M,Θ) = Gg = (1− P )T♦g.

Replacing g with Tf in equation (2.7) and using the fact that 1 − P is projector,
we get

E(f,M,Θ) = (1− P )f,

and the error evaluation operator is

T † = 1− P.

To find the error evaluation operator T † and the corresponding error E(f,M,Θ)
of a given problem, we need a closed form of the projector operator P in terms
of Stieltjes conditions/functionals. The following lemma gives a closed form of the
projector operator with Stieltjes conditions in the language of linear algebras.

Lemma 2.2.([9]) Let S be a vector space and M = {U1, U2, 1, . . . , x
s−2} ≤ S, and

Θ = {θ0, . . . , θs} ≤ S∗ are orthogonally closed sets. Then P : S → S is a projector
onto M along Θ given by

(2.8) P = U1θ̃0 + U2θ̃1 +

s−2∑
i=0

xiθ̃i+2,

where (θ̃0, . . . , θ̃s)
T = E−1(θ0, . . . , θs)

T .

For sake of completeness, we include a sketch of the proof as follows.
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Proof. Since the evaluation matrix E is invertible, (θ̃0, . . . , θ̃s) and {U1, U2, 1, . . . ,
xs−2} are bi-orthogonal. Hence P is projector with Range(P ) = M and Ker(P ) =
Θ⊥. 2

Using Lemma 2.2, we can compute the projector operator, and hence the eval-
uation operator T †. The following theorem gives the generalization of the above
formulation.

Theorem 2.3. Suppose f̃s(x) is of the form (1.1), an approximation of f(x), then
the error E(f,M,Θ) involved due to the approximation is given by

(2.9) E(f,M,Θ) = (1− P )f,

where P is a projector onto M along Θ⊥ computed as in Lemma 2.2.

To illustrate the symbolic formulation of the error E(f,M,Θ) given in Theorem
2.3, we provide the following example to find the error formula.

Example 2.4. We present a symbolic formulation of the error due the approxima-
tion of f(x) = e0.2x by a mixed interpolant f̃3(x) of the form (1.1) with Stieltjes con-

ditions f(0) = 1, f ′(0.2) = 0.208, f(0.3) +
0.3∫
0

f(x)dx = 1.371, f ′(0.5) +
0.5∫
0

f(x)dx =

0.747 for a special choice of U1(x) = cosx and U2(x) = sinx.
In symbolic notations, we have Θ = {E0, E0.2D, E0.3 + E0.3A, E0.5D + E0.5A} with

associated values Σ = {1, 0.208, 1.371, 0.747} and M = {cosx, sinx, 1, x}. The
differential operator with fundamental system M is constructed similar to equa-
tion (2.1) as follows

T =
d4

dx4
+

d2

dx2
.

It is clear that

TE(f,M,Θ) = Tf,

ΘE(f,M,Θ) = 0,

where E(f,M,Θ) = f(x)− f̃3(x) is the error to be find. Following the algorithm in
Theorem 2.3, we have

E(f,M,Θ) = (1− P )f,

where P is the projector onto M along Θ⊥ computed as in Lemma 2.2 and is given
by

P = x(−273.596E0 − 85.180E0.2D + 205.198E0.3 + 205.198E0.3A + 13.678E0.5D + 13.678E0.5A)

+ sin(x)(259.976E0 + 82.550E0.2D− 194.727E0.3 − 194.727E0.3A− 13.661E0.5D− 13.661E0.5A)

+ cos(x)(−94.638E0 − 26.556E0.2D + 72.240E0.3 + 72.240E0.3A + 1.451E0.5D + 1.451E0.5A)

+ 95.638E0 + 26.556E0.2D− 72.240E0.3 − 72.240E0.3A− 1.451E0.5D− 1.451E0.5A.
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Now the error E(f,M,Θ) = (1− P )f is given by

E(f,M,Θ) = e0.2x − 1.039 + 0.039 cos(x) + 0.0184 sin(x)− 0.218x.

If we select U1(x) = x3 and U2(x) = x2, then the corresponding differential operator

is T = d4

dx4 and the error Ẽ(f,M,Θ) is given by

Ẽ(f,M,Θ) = e0.2x − 1− 0.200x− 0.020x2 − 0.0014x3.

2.1. Approximation of a Function by Mixed Interpolation

Comparing equations (1.3) and (2.9), one can observe that the mixed interpo-

lation f̃s(x) can be computed with a given set Θ of Steiltjes conditions using the
following formula:

(2.10) f̃s = Pf,

where P is a projector onto M along Θ⊥ and P is computed as in Lemma 2.2. From
Example 2.4, the mixed interpolant, f̃3(x) for U1(x) = cosx and U2(x) = sinx with
given Stieltjes conditions, is obtained as

f̃3(x) = 1.039 + 0.218x− 0.039 cosx− 0.0184 sinx,

for U1(x) = x3 and U2(x) = x2, we have

f̃3(x) = 1 + 0.200x+ 0.020x2 + 0.0014x3,

and it satisfies Θf̃3 = Σ, i.e. θf̃3 = θf .
We generalize the above observation in the following theorem.

Theorem 2.5. The approximation f̃s(x) of a function f(x), with given linearly
independent sets Θ = {θ0, θ1, . . . , θs} and M = {U1, U2, 1, . . . , x

s−2}, is computed
by

(2.11) f̃s(x) = Pf(x),

where P is a projector operator onto M along Θ⊥ as given in Lemma 2.2.

The following section gives an implementation of the proposed algorithm in
Maple with sample computations.

3. Maple Implementation

We present the implementation of the proposed algorithm by creating different
data types in Maple with help of the Maple package IntDiffOp implemented by
Korporal et al. [5]. To display the operators, we have D for the differential operator,
A for the integral operator and E for the evaluate operator as defined in IntDiffOp
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package. The data type StieltjesCondition(evp,a,n,b), given below, is created
to represent the Stieltjes conditions, where evp is the evaluation point, a is the
coefficient of evaluation operator, n is the order of differential operator and b is the
coefficient of integral operator.

with(IntDiffOp):

StieltjesCondition:=proc(evp,a,n,b)

local diffpower;

if n=0 then

return BOUNDOP(EVOP(evp,EVDIFFOP(a),

EVINTOP(EVINTTERM(b,1))));

else

diffpower:=seq(0,i=1..n-1);

return BOUNDOP(EVOP(evp,EVDIFFOP(a,diffpower,1),

EVINTOP(EVINTTERM(b,1))));

end if;

end proc:

The procedure EvaluationMat(U1, U2, SC), given below, calculates the evalu-
ation matrix, where SC is the column matrix of given Stieltjes conditions and U1,U2

are the known functions.

with(IntDiffOp):

EvaluationMat:=proc(U1,U2,SC::Matrix)

local boundlist,r,c,elts,fs,C,S;

r,c:=LinearAlgebra[Dimension](SC);

C(x):=U1;S(x):=U2;

fs:=Matrix(1,r,[C(x),S(x),seq(x^ (i-1),i=1..r-2)]);

elts:=seq(seq(ApplyOperator(SC[k,1],fs[1,j]),j=1..r),k=1..r);

return Matrix(r,r,[elts]);

end proc:

An approximation of a given function f(x) with known U1,U2 is calculated us-
ing the data type ApproxedMixedInterpolation(U1,U2,f,SC) as given below.

with(IntDiffOp):

ApproxedMixedInterpolation:= proc(U1,U2,f,SC::Matrix)

local r,c,fs,evm,invevm,cm,approx,C,S;

r,c:=LinearAlgebra[Dimension](SC);

C(x):=U1;S(x):=U2; fun(x):=f;

fs:=Matrix(1,r,[C(x),S(x),seq(x^ (i-1),i=1..r-2)]);

cm:=ApplyOperator (SC,fun);

evm:=EvaluationMat(U1,U2,SC);

invevm:=1/evm;
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approx:=fs.invevm.cm;

return simplify(approx[1,1]);

end proc:

The error estimation is calculated using the following procedure ErrorEstimation(U1,U2,f,SC).

with(IntDiffOp):

ErrorEstimation:= proc(U1,U2,f,SC::Matrix)

local err,fun,approx;

fun(x):=f;

approx(x):=ApproxedMixedInterpolation(U1,U2,f,SC);

err:=simplify(fun(x)-approx(x));

return err;

end proc:

Example 3.1. For sample computations using Maple implementation, recall the
Example 2.4 presented in Section 2.

> with(IntDiffOp):

> f:= exp(0.2x);

e0.2x

> SC1:=StieltjesCondition(0.0,1,0,0);

SC2:=StieltjesCondition(0.2,0,1,0);

SC3:=StieltjesCondition(0.3,1,0,1);

SC4:=StieltjesCondition(0.5,0,1,1);

SC1 := E[0.0]

SC2 := E[0.2].D

SC3 := E[0.3] + E[0.3].A

SC4 := E[0.5].D + E[0.5].A

> SC:=Matrix([[SC1],[SC2],[SC3],[SC4]]);

SC :=


E[0.0]
E[0.2].D

E[0.3] + E[0.3].A
E[0.5].D + E[0.5].A


> U11:=cos(x):U12:=sin(x):

> U11:=x^3:U12:=x^2:

> EvaluationMat(U11,U12,SC);
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
1 0 1 0

−0.19867 0.98007 0 1
1.25086 0.34018 1.3 0.345

0 1 0.5 1.125


> ApproxedMixedInterpolation(U11,U12,f,SC);

−0.03911007 ∗ cos(x)− 0.01845023 ∗ sin(x) + 1.039110069 + 0.21847466 ∗ x

> f3(x):= -0.03911007*cos(x)-0.01845023*sin(x)+1.039110069+0.21847466*x:

> ErrorEstimation(U11,U12,f,SC);

exp(0.2 ∗ x) + 0.03911007 ∗ cos(x) + 0.01845023 ∗ sin(x)

− 1.039110069− 0.2184746600 ∗ x

> er(x):=exp(0.2*x)+0.03911007*cos(x)+0.01845023*sin(x)

-1.039110069-0.2184746600*x:

> er(0.15);

0.00000134000

> er(0.46);

−0.0000079696

> EvaluationMat(U21,U22,SC);
0 0 1 0

0.12 0.4 0 1
0.029025 0.099 1.3 0.345
0.765625 1.0416667 0.5 1.125


> ApproxedMixedInterpolation(U21,U22,f,SC);

0.001400394 ∗ x3 + 0.019982904 ∗ x2 + 1 + 0.2000009373 ∗ x

> ErrorEstimation(U21,U22,f,SC);

exp(0.2 ∗ x)− 0.001400394 ∗ x3 − 0.019982904 ∗ x2 − 1− 0.2000009373 ∗ x
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