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ABSTRACT. This paper is devoted to the study of strongly a-semicommutative rings, a
generalization of strongly semicommutative and a-rigid rings. Although the n-by-n upper
triangular matrix ring over any ring with identity is not strongly @-semicommutative for
n > 2, we show that a special subring of the upper triangular matrix ring over a reduced
ring is strongly @-semicommutative under some additional conditions. Moreover, it is
shown that if R is strongly a-semicommutative with «(1) = 1 and S is a domain, then the
Dorroh extension D of R by S is strongly a-semicommutative.

1. Introduction

Throughout this paper, R denotes an associative ring with identity and a de-
notes a nonzero and non-identity endomorphism, unless specified otherwise. A ring
R is called semicommutative, if for all a,b € R,ab = 0 implies aRb = 0. This is
equivalent to the usual definition by [18, Lemma 1.2] or [8, Lemma 1]. Properties,
examples and counterexamples of semicommutative rings were given in Huh, Lee
and Smoktunowicz [8], Kim and Lee [10], Liu [13] and Yang [19]. One of general-
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izations of semicommutative rings was investigated by Liu and Zhao in [14].

Recall that an endomorphism « of a ring R is called rigid [11] if for a € R,
ac(a) = 0 implies a = 0, and R is called an a-rigid ring [6] if there exists a
rigid endomorphism « of R. Note that any rigid endomorphism of a ring is a
monomorphism, and «-rigid rings are reduced rings by [6, Proposition 5]. Due
to [1], an endomorphism « of a ring R is called semicommutative if whenever
ab = 0 for a,b € R,aRa(b) = 0. A ring R is called a-semicommutative if there
exists a semicommutative endomorphism « of R. Gang and Ruijuan [5] called
a ring R strongly semicommutative, if whenever polynomials f(z),g(z) in R[z]
satisfy f(z)g(z) = 0, then f(x)R[z]g(z) = 0. In general the polynomial rings
over a-semicommutative rings need not be a-semicommutative. In this paper,
we consider the a-semicommutative rings over which polynomial rings are also a-
semicommutative and we call them strongly a-semicommutative rings, i.e., if «
is an endomorphism of R, then « is called strongly semicommutative if whenever
polynomials f(z),g(z) € R[z] satisfy f(z)g(x) = 0, then f(z)R[z]a(g(x)) = 0. A
ring R is called strongly a-semicommutative if there exists a strongly semicom-
mutative endomorphism « of R. Clearly strongly a-semicommutative rings are a-
semicommutative but not conversely. If R is Armendariz, then these two concepts
coincide (see, Proposition 2.11). We characterize a-rigid rings by showing that a
ring R is a-rigid if and only if R is a reduced strongly a-semicommutative ring and
« is a monomorphism. It is also shown that a ring R is strongly a-semicommutative
if and only if the polynomial ring R[x] over R is strongly a-semicommutative. Some
extensions of a-semicommutative rings are considered.

2. Strongly a-semicommutative Rings

In this section we introduce the concept of a strongly a-semicommutative ring
and study its properties. Observe that the notion of strongly a-semicommutative
rings not only generalizes that of a-rigid rings, but also extends that of strongly
semicommutative rings. We start by the following definition.

Definition 2.1. An endomorphism « of a ring R is called strongly semicom-
mutative if whenever polynomials f(x),g(z) € Rlx] satisfy f(z)g(xz) = 0, then
f(z)R[z]a(g(z)) = 0. A ring R is called strongly a-semicommutative if there exists
a strongly semicommutative endomorphism « of R.

It is clear that a ring R is strongly semicommutative, if R is strongly Igr-
semicommutative, where Ig is the identity endomorphism of R. It is easy to see
that every subring S with «(S) C S of a strongly a-semicommutative ring is also
strongly a-semicommutative. For any ¢ € I, let R; be strongly o;-semicommutative
where «o; is an endomorphism of R;. Set W = II;c; R;. Define an endomorphism «
of W as following:

ala;)ier = (@iaq))ier-

Then it is easy to see that W is strongly a-semicommutative.
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Remark 2.2. Let R be a strongly a-semicommutative ring with f(z)g(z) = 0
for f(z),g(x) € R[z]. Then f(z)R[z]a(g(x)) = 0 and, in particular, f(x)a(g(z)) =
0. Since R is strongly a-semicommutative, we get f(z)R[z]a?(g(x)) = 0. So, by
induction hypothesis, we obtain f(z)R[z]a*(g(x)) = 0 and f(z)a*(g(z)) = 0, for
any positive integer k.

The following example shows that there exists an endomorphism « of strongly
semicommutative ring R such that R is not strongly a-semicommutative.

Example 2.3. Let Zs be the ring of integers modulo 2 and consider the ring
R = Zo &P Z,, with the usual addition and multiplication. Then R is strongly
semicommutative, since R is a commutative reduced ring. Now, let a : R — R
be defined by «((a,b)) = (b,a). Then « is an automorphism of R. For f(z) =
(1,0) 4+ (1,0)z and g(z) = (0,1) + (0, 1)z, it is clear that f(x)g(z) = 0. But (0,0) #
((1,0) + (1,0)x)(1, D)x((1,0) + (1,0)z) € f(x)R[x]a(g(x)). Thus R is not strongly

a-semicommutative.
Lemma 2.4. R is a reduced ring if and only if so is R|z].
Lemma 2.5. A ring R is a-rigid if and only if R[x] is a-rigid.

Theorem 2.6. A ring R is a-rigid if and only if R is a reduced strongly -
semicommutative ring and « s a monomorphism.

Proof. (=) Let R be an o-rigid ring. Then R is reduced and « is a
monomorphism by [6, p.218]. Assume that f(z)g(x) = 0, for f(z),g9(z) €
R[z]. Let h(z) be an arbitrary polynomial of R[z]. Then g(x)f(z) = 0 since
R[z] is reduced by Lemma 2.4. Thus f(x)h(z)a(g(x))a(f(z)h(z)a(g(z))) =
() ()ah@)a (o) = 0. Since R s arigd, S h(a)alg(r) =0
by Lemma 2.5 so f(z)R[z]a(g(x)) = 0. Thus R is strongly a-semicommutative.
(<) Assume that f(z)a(f(z)) = 0 for f(x) € R[z]. Since R is reduced and
strongly a-semicommutative, a(f(x))f(z) = 0 and so «o(f(x))R[z]a(f(z)) = 0.
Hence o((f(z))?) = 0 and so f(xz) = 0, since o is a monomorphism and R is
reduced. Therefore R is a-rigid. |

The following examples show that the condition “R is reduced ring” and “« is
a monomorphism” in Theorem 2.6 cannot be dropped respectively.

Example 2.7. Let Z be the ring of integers. Consider R = 8 Z > la,b € Z} .
. a b a —b
Let @ : R — R be an endomorphism defined by « 0 a =l o0 4 .

Note that « is an automorphism. By [1, Example 2.5(1)] R is not reduced and
hence R is not a-rigid. Thus R[z] is not a-rigid by Lemma 2.5.
_ _ ( fol@) fi(z) _ [ 90(x) gi(x)
Let J(wlala) = 0 for 1) = (55 Y gy = (95 ) €
R[z]. Then fo(z)go(z) = 0 and fo(z)g1(z) + fi(x)go(x) = O
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( ho(gx) fia (& ) € R|z], we have
( fo(z)  fi(z

T N R D T (e ))
_ ( fo(@)ho(z)go(x) —fo(z)ho(2)g1(x )+f(

Since fo(x)go(x) = 0, fo(x) = 0 or go(x) = 0. If fo(x) = 0 then fi(x)go(x) = 0. So
f(@)R[z]a(g(r)) = 0. If go(x) = 0 then fo(x)g1(x) = 0. Again f(z)Rlz]a(g(x)) = 0.
Thus R is strongly a-semicommutative.

Example 2.8. Let F be a field and R = F[z] the polynomial ring over F. Define
a: R[x] = R[z] by a(f(z)) = f(0) where f(x) € R[z]. Then R[z] is a commutative
domain (and so reduced) and « is not a monomorphism. If f(z)g(x) = 0 for
f(z),g(x) € R[z] then f(z) =0 or g(x) =0, and so f(x) =0 or a(g(x)) = 0. Hence
f(z)R[z]a(g(x)) = 0, and thus R is strongly a-semicommutative. Note that R is
not a-rigid, since za(x) =0 for 0 # = € R.

Observe that if R is a domain then R is both strongly semicommutative and
strongly a-semicommutative for any endomorphism « of R. Example 2.7 also shows
that there exists a strongly a-semicommutative ring R which is not a domain.
According to Cohn [4], a ring R is called reversible if ab = 0 implies ba = 0 for
a,b € R. Baser and et al. [2] called a ring R right (respectively, left) a-reversible
if there exists a right (respectively, left) reversible endomorphism « of R. A ring is
a-reversible if it is both left and right a-reversible.

Lemma 2.9.([16, Proposition 3]) A reduced a-reversible ring is a-semicommutative.

Proposition 2.10. Let R be a reduced and a-reversible ring. Then R is strongly
a-semicommutative.

Proof. Let f(x) = ¥ jaix’, g(x) = X obja’ € Rz] be such that f(z)g(z) =
0= ZZ:?ZH]-:Sa,be . Since every reduced ring is an Armendariz ring, we ob-
tain a;b; = 0. Then a(b;)a; = 0 (by a-reversibility). Now for arbitrary el-

ement h(z) = XT_,ckz® € R[z], we have a(bj)a;c, = 0 for each i,j,k, so
a;cpe(bj) = 0 (by reducibility). Hence, f(z)h(z)a(g(z)) = 0. Therefore R is
strongly a-semicommutative. O

Rege and Chhawchharia [17] called a ring R an Armendariz ring if whenever
polynomials f(z) = ag+a1x+- - -+ amx™,g(x) = bg+biz+---+byz™ € Rx] satisfy
f(x)g(xz) = 0, then a;b; = 0 for each ¢ and j. Hong et al. [7] called a ring R a-
Armendariz if whenever f(z) = ap+a12+- -+ amaz™, g(x) = bo+b1x+- -+ byz™ €
Rx; o] satisty f(z)g(z) =0, then a;b; = 0 for each ¢ and J

Proposition 2.11. Let R be an Armendariz ring. If R is a-semicommutative, then
R is strongly a-semicommutative.

Proof. Suppose that f(z) = X_ga;x’, g(x) = X7 obja’ € R[z] satisfy f(x)g(x) = 0.
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Then, since R is Armendariz, each a;b; is zero, additionally R is a-semicommutative,
therefore a;crpa(b;) = 0 for any element ¢, in R for all ¢, j, k. Now it is easy to check
that f(x)h(x)a(g(z)) = 0 for any h(z) = X5_,ckz* € Rlz]. O

Lemma 2.12.([10, Proposition 3.1(2)]) If R is a reversible a-Armendariz ring,
then R is a-semicommutative.

Liu and Yang [20] called a ring R strongly reversible, if whenever polynomials

f(x),g(z) € R[z] satisty f(x)g(x) =0, then g(z)f(z) = 0.

Proposition 2.13. If R is a strongly reversible a-Armendariz ring, then R is
strongly a-semicommutative.

Proof. Let f(z)g(x) = 0, for f(z),g(x) € R[x]. Then g(x

) = 0 since R is
strongly reversible. By [7, Proposition 1.3(1)], we obtain «

2)
() f(x ) = 0, and

I
(9(z))
(g(x)) = 0 for all

so a(g(x))f(z)h(z) = 0 for all h(x) € R[xz]. Hence, f(z)h(z)a ) =
h(xz) € R[z] since R is strongly reversible and f(z)R[z]a(g(x)) = 0. Therefore, R
is strongly a-semicommutative. O

Recall that an element u of a ring R is right regular if ur = 0 implies r» = 0 for
r € R. Similarly, left regular elements can be defined. An element is regular if it is
both left and right regular (and hence not a zero divisor).

Proposition 2.14. Let A be a multiplicatively closed subset of a ring R consisting
of central reqular elements. Then R is strongly a-semicommutative if and only if
so0is ATIR.

Proof. 1t is enough to show that the necessity. Suppose that R is strongly
a-semicommutative. Let F(z)G(z) = 0, for F(z) = u 'f(z) and G(z) =
v-lg(z) € (A7'R)[x] where u,v are regular and f(z),g(z) € Rlx]. Since A
is contained in the center of R we have 0 = F(2)G(z) = uf(z)v lg(z) =
(u=to ) f(x)g(x) = () Lf(x)g(x) and so f(x)g(x) = 0. Since R is strongly
a-semicommutative, f(z)R[z]a(g(z)) = 0 and f(z)(s"'R)[z]a(g(x)) = 0 for any
regular element s. This implies F(x)(A7!R)[z]a(G(z)) = 0. Therefore A™'R is
strongly a-semicommutative. O

The ring of Laurent polynomials in x with coefficients in a ring R, denoted
by R[z;z~!], consists of all formal sums ) ., m;z* with obvious addition and
multiplication, where m; € R and k,n are (possibly negative) integers.

Corollary 2.15. Let R be a ring with a(1) = 1. Then R[z] is strongly a-
semicommutative if and only if Rlx;x~"] is strongly a-semicommutative.

Corollary 2.16. Let R be an Armendariz ming. Then the following are equivalent:
(1) R is a-semicommutative.
(2) R is strongly a-semicommutative.

(3) R[z;x~1] is strongly a-semicommutative.
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Proposition 2.17. Let R be a ring, e a central idempotent of R, with a(e) = e.
Then the following statements are equivalent:

(1) R is strongly a-semicommutative Tings.
(2) eR and (1 —e)R are strongly a-semicommutative rings.

Proof. (1)<(2) This is straightforward since subrings and finite direct products of
strongly a-semicommutative rings are strongly a-semicommutative. O

We denote by M,,(R) and T, (R) the nxn matrix ring and n xn upper triangular
matrix ring over R, respectively.

Given a ring R and a bimodule gp Mg, the trivial extension of R by M is the
ring T(R, M) = R@ M with the usual addition and the following multiplication
(r1,mq)(r2, m2) = (rire,r1ma+myre). This is isomorphic to the ring of all matrices
g m , where r € R,m € M and the usual matrix operations are used.

For an endomorphism « of a ring R and the trivial extension T'(R, R) of R,
a:T(R,R) = T(R, R) defined by a (( 8 Z )) = ( aga) g((z)) ) is an endo-
morphism of T'(R, R). Since T'(R, 0) is isomorphic to R, we can identify the restric-
tion of @ by T'(R, 0) to . Notice that the trivial extension of a a-semicommutative
ring is not a-semicommutative by [1, Example 2.9]. Now, we may ask whether
the trivial extension T'(R,R) is strongly a-semicommutative if R is strongly a-
semicommutative. But the following example erases the possibility.

Example 2.18. Consider the strongly a-semicommutative ring R = { ( a b > |

0 a
. . a b a —b\ .
a,b € Z » with an endomorphism « defined by « 0 a =l o0 4 in
Example 2.7. For
01 -1 1 0 1 11
0 0 0 -1 0 0 0 1
A= 0 0 0 1 B = 0 0 0 1 € T(R,R)
0 0 0 0 0 0 0 0
we have AB = 0. However, for
1 0 0 0
0 1 0 0
C= 0 0 10 € T(R,R),
0 0 0 1
we obtain
0 0 0 2
0 0 0 0 _ _
0 # 0 0 0 0 = ACa(B) € AT (R, R)a(B).
0 0 0 0
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Thus, T(R, R) is not strongly a-semicommutative.

It was shown in [1, Proposition 2.10], that if R is a reduced a-semicommutative
ring, then T'(R, R) is an a-semicommutative. Here we have the following results.

Proposition 2.19. Let R be a reduced ring. If R is a-semicommutative, then
T(R, R) is strongly a-semicommutative.

Proof.  Let f(z) = (fo(2), /i(2)),9(z) = (g0(x),q1(x)) € T(R,R)[z] with
f(z)g(x) = 0. We shall prove f(x)T(R, R)[x]a(g(x)) = 0. Now we have

(2.1) fo(x)go(z) =0,
2.2 fo(x)gr1(x) + fi(x)go(z) = 0.

Since R is reduced, R[] is reduced. Therefore, (2.1) implies go(z) fo(z) = 0. Multi-
plying (2.2) on the left side by go(z) we get f1(z)go(x) = 0, and so fo(x)g1(z) = 0.
Let f(m) = E?:O(ai,bi)xl,g‘(x) = E;”:O(aj,b;)xj, where fo(z) = B2 pa;zt, fi(x) =
Yl obir’, go(z) = YT gala’ and gi(x) = BT b7 . Since every reduced ring is
an Armendariz ring, we obtain that a;a); = 0,a;b; = 0,b;a’; = 0 for all 4,j by the
preceding results. With these facts and the fact that R is a-semicommutative, we
have a;cra(a)) = 0,aicka (b)) = 0,a;dga(b}) = 0,bicka(a}) = 0, for any elements
Ck, di. Thus, f(x)h(z)a(g(z)) = 0, for any arbitrary h(x) = Xr_,(ck, dy)z* € R[z].
This implies that T(R, R) is strongly a-semicommutative. O

The trivial extension T'(R, R) of a ring R is extended to

b
S3(R) = a la,b,c,d € R
0

o o e
Q@ QU0

and an endomorphism « of a ring R is also extended to the endomorphism & of
S3(R) defined by a((a;j)) = (&(ai;)). There exists a reduced ring R such that S3(R)
is not strongly @-semicommutative by the following example.

Example 2.20. We consider the commutative reduced ring R = Zy @ Zo, and

the automorphism « of R defined by a((a,b)) = (b,a), in Example 2.3. Then
(1,0) (0,0) (0,0)

S3(R) is not strongly a-semicommutative. For A = (0,0) (1,0) (0,0) |,

(
(0,0) (0,0) (1,0)

(0,1) (0,0) (0,0)

B = (0,0) (0,1) (0,0) | € S3(R), then AB = 0, but AAa(B) = A # 0.
(0,0) (0,0) (0,1)

Thus AS3(R)&(B) # 0, and therefore S3(R) is not strongly a-semicommutative

However, we obtain that S3(R) is strongly @-semicommutative for a reduced a-
semicommutative ring R by the similar method to the proof of Proposition 2.19 as
follows:

209



210 A. Elshokry, E. Ali and L. ZhongKui

Proposition 2.21. Let R be a reduced ring. If R is a-semicommutative, then

Sg(R)z{( ) |a,b,c,d6R}

18 strongly a-semicommutative.

Proof. For
ay bl C1 ag bg C2
0 a1 dy , 0 as do € 53 (R),
0 0 a 0 0 ao

we can denote their addition and multiplication by

b
a
0

o o e
SISV

(@1,b1,¢1,d1) + (ag,ba, c2,d2) = (a1 + a2, b1 + b2, c1 + 2, d1 + da),

(a1,b1,c1,d1)(ag, ba, ca,da) = (arag, arbs + bras, arca + bids + craz, a1ds + diaz),

respectively. So every polynomial in Ss[z] can be expressed in the form of
(fos f1, f2, f3) for some f;'s in R[z]. Let f(z) = (fo(2), f1(2), f2(2), f3(2)), g(z) =

(90(x), 91 (1), 92(), g5(x)) € Safx] with f(z)g(x) = 0. Then f(z)g(x) = (fo(x)go(x).

fo(@)g1(@)+ f1(2)g0(x), fo(x)g2(2)+f1(2)gs()+f2(2)g0(2), fo()gs(x)+ f3(x)go(x)),
we shall prove f(z)Ss3(R)[z]a(g(z)) = 0. So we have the following system of equa-

tions:

(2.3) fo(@)go(x) =0,
(2.4) fo(z)g1(x) + fi(z)go(z) =0,
(2.5) fo(z)g2(z) + f1(z)gs(x) + f2(x)go(z) = 0,
(2.6) fo(z)gs(x) + f3(x)go(z) = 0

Use the fact that R[x] is reduced. From Eq. (2.3), we get go(x)fo(z) = 0.
If we multiply Eq. (2.4), on the right side by go(z), then 0 = (fo(z)g1(z) +

fi(@)go(2))go(x) = fi(x)g5(2), and so fi(2)go(x) = 0 and fo(x)gi (2) = 0. Similarly,
from Eq. (2.6), we have f3(x)go(z) = 0, and fo(z)gs(z) = 0. Also, in Eq. (2.5),

0= (fo(z)g2(2)+ f1(2)gs(x)+ f2()go (7)) go(x) = f2(2)g5 () implies fo(x)go(z) =0

and
(2.7) fo(w)ga(w) + fi(x)gs(x) = 0.

Multiplying (2.7) on left side by fo(2) gives 0 = fo(z)(fo(2)g2(z)+f1(z)gs(z)) =
f2(x)g2(x), and so fo(x)ga(x) = 0 hence fi(x)gs(z) = 0. Let

n a; bl C; ) m a; b; 3 4
@y => 1 0 a d |a'g@)=> [ 0 o d |
j 0

i=0 0 0 ua 0 3

Q

S
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" i /!

a, by cj
and h(z)=>1_o| 0 af di |z*e S5(R),

0 0 a}
where fo(x),: Tioai’, f1(x) = Xigbix’, fa() = Ui gcitt, f3(z) = Z?:odixlvgo(x)
= XN pala?, gi(x) = BlLobial, ga(x) = BT ocjal, gs(w) = EJLqdja’. Since every
reduced ring is an Armendariz ring, we obtain that a;a}; = 0,a;0; = 0,b;a} =
0,a;c; = 0,b;d; = 0,c;a; = 0,a;d; = 0,d;a}; = 0, for all 4,j by the preceding
results. With these facts and the fact that R is a-semicommutative ring, we
have a;aja(a)) = 0,a;a7a(b;) = 0,baia(a)) = 0,biaja(d;) = 0,aa;a(c)) =
O,aib;/c’loz(d%) = O,b,;cltl;c'oz(c/l;) = O,aj;lcgaga;) = 0,bidja(a)) = 0,capa(a)) =
0,a;aya(d;) = 0,a;dja(a)) = 0,d;aga(a}) = 0. Consequently, we get the equa-
tion:

=
8
~—
=
8
~—
Q
—~
=N
8
~
~
I
—~
>
—
N
=
~
o
—
&
>
&
~—
n
w
=)
~—
8
Q
—~
k)
=)
—
8
~
)
=
—
8
~
<
V)
8
~
<
w
8
~
~

= (fo(z)S3(R)[z]a(go(x)), fo(x)S3(R)[z]a
)+ f1(z)S3(R)]
) + f3(x)S3(R)[x]a(go(w

Therefore S5(R) is strongly @-semicommutative. O

Let R be a ring. Define a subring S,, of the n-by-n full matrix ring M,,(R) over
R as follows:

a a2 a3 - QAin
0 a a23 agn

Sn(R) = 0 0 a Tt O3n | a,;; € R
0 0 0 a

For an a-rigid ring R and n > 2, by Proposition 2.21, we may suspect that
Sn(R) may be strongly a-semicommutative ring for n > 4. But the possibility is
eliminated by the next example.

Example 2.22. Let R be an a-rigid and

a a2 aiz a4
_ 0 a a23 a24 -
Sy = 0 0 0 as | a,ai; € R
0 0 0 a
Note that if R is an a-rigid ring, then a(e) = e, for e = e € R by [6, Proposition
01 -1 0 0 0 0O
. 00 0 O 00 0 1
5]. In particular o(1) = 1. For A = 00 0 0 ,B = 000 1]|¢€
0 0 0 O 0 0 0O
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—_

S4(R), we obtain AB = 0. But we have 0 # = ACa(B) €

cooo
co o~
coo |l
cooo

S4(R), for C = € S4(R). Thus AC&(B) # 0 and so S4(R) is not

o O OO
o O O O
oo = O
o O OO

strongly a-semicommutative. Similarly, it can be proved that S, (R) is not strongly
a-semicommutative for n > 5.

Let R be a ring and let

ar a a3z -+  QAp_o a b
0 a ax -+ ap3 an2 c
0 0 a -+ ana Gn-3 ap-2
VaR)=485=| ¢ ot |aabceR
0 0 0 aq as as
o o o0 -- 0 al az
o o o --- 0 0 ai

Note that if a = ¢, then the matrix S is called an upper triangular Toeplitz
matrix over R, see [15].

We proved in Proposition 2.21 and Example 2.22 that when R is a reduced ring
and R is an a-semicommutative ring, then S3(R) is strongly @-semicommutative,
but S, (R) is not strongly a-semicommutative for n > 4. In the next theorem we
will show that a special subring V,,(R) of T,,(R) for any positive integer n > 2 is
strongly a-semicommutative, where R is a reduced and a-semicommutativethe ring.

Theorem 2.23. Let R be a reduced ring. If R is a-semicommutative, then Vi, (R)
18 strongly a-semicommutative.

Proof. Suppose that

a1 a2 az -+ Ap-2 QAlnp—-1 Gln by b2 b3 -+ bp—2 binp-1  bin
0 a1 a2 -+ ap-3 ap-—2 azn 0 b1 b2 -+ bp-z bp_2 ban
0 0 al ce an—4 an—3 an—2 0 0 b1 te bn—4 bn—3 bn—2
0 0 o - al as as 0 0 o .- b1 bo b3
0 0 o .- 0 al as 0 0 o .- 0 b1 bo
0 0 o - 0 0 al 0 0 [ 0 0 b1

are in V,,(R). So every polynomial in V,,(R)[z] can be expressed in the form of
(f17f27"' 7fn727f1,n717f1n7f2n) for some fiﬁs in R[.’I?] Let f($> = (fo(x)afl(x>7
o fan(@),9(2) = (90(2), 91(2), -+, gan(@)) € Va(R)[z] with f(z)g(z) = 0. We
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shall prove f(x)V,(R)[z]a(g(x)) = 0. Now we have the following system of equa-
tions:

(2.8) fi(@)g1(x) =0,
2.9 fi(x)ga2(z) + fa(w)g1(x) =0,
fi(@)gs(z) + fa(w)g2(x) + f3(x)g1(z) = 0,

f1(@)gn—2(x) + f2(2)gn—3(2) + -+ - + fa—2(z)g1(2) = 0,

(2.10) fi(®)g1n—1(x) + fo(@)gn—2(x) + - + fa2(x)g2(®) + fin-1(x)g1(x) = 0,
(2.11) fi(@)gin(z) + f2(z)g2n(z) + - + frn-1(2)g2(z) + fin(z)g1(z) = 0,
(2.12) fi(@)gan(z) + f2(2)gn—2(x) + - + fu2(z)g2(z) + fon(z)g1(z) =0

Use the fact that R[x] is reduced. From Eq. (2.8), we get gi(x)f1(z) = 0.
If we multiply Eq. (2.9) on the right side by fi(x), then fi(z)g2(z)f1(x) +
fo(@)gr(z) fr(x) = 0. Thus fi(z)g2(x)fi(x) = 0 and hence fi(z)g2(x) = 0.
From Eq. (2.9) it follows that fa(x)gi(z) = 0. Continuing in this man-
ner, we can show that fi(z)g;(x) = 0 when ¢+ j = 2,...,n — 1. Hence
g;j(x)fi(x) = 0. Multiplying Eq. (2.10) on the right side by fi(x), we ob-
tain 0 = fi(2)g1n-1(2)f1(2) + fa(@)gn—2() fi(z) + - + fuo2(x)g2(2) fi(z) +
Fin1(@)91(@)f1 () = F1(@)g10-1(2) f1 (). Thus f1()g1.01(z) = 0. Hence

(2.13) fo(@)gn—2(x) + -+ fu_2(x)g2(x) + frn—1(x)g1(x) = 0,

Multiplying Eq. (2.13) on the right side by fa(x), we obtain
0="fo(@)gn—2(x)f2(x) + - + frno2(2)g2(2) f2(2) + frn-1(x)g1 () f2(2)
= fa(@)gn-2(z) f2(2).

Thus f2(z)gn—2(z) = 0. Continuing in this manner, we can show that
fi(z)gj(z) = 0 when i + j = n and fi(z)g1.n—1(x) = 0, fi,n—1(z)g1(z) = 0. Simi-
larly, from Eq. (2.12), it follows that fi(x)gen(z) = 0 and fa,(z)g1(x) = 0. Now
multiplying Eq. (2.11) on the right side by fi(z), we have

1(z

0= fi(@)gin(z) f1(2)+ f2(2) 920 (2) f1(2)+ f3(2) gn—2(2) f1 (@) 4+ -+ fr—2(2) g3 (2)
f1(@)+ frn-1(x)g2(2) fr(x)+ fin(@)g1 (@) fi1(z) = fi(z)gin(z) f1(x). Thus fi(x)g1n(x)

= 0. Hence

(2.14)  fa(2)g2n(2) + f3(2)gn—2(2) + - + frn-1(2)g2(2) + fin(2)g1(2) = 0,

If we multiply Eq. (2.14) on the right side by fa(x), then 0 = fg( )gzn( ) fa(x) +
f3(@)gn—2() fo(z)++ -+ fin—1(2)g2(2) fo(2) + fin(z) g1 () fo(z) = f2(2)g2n(2) f2(2).
Thus f2(x)gen(z) = 0. Continuing in this manner, we can show that fi(z)g;j(z) =0
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when i +j = n+ 1, fiu-1(2)gs(x) = 0 and fi,()g:(x) = 0. Let

ay ay ay e Gy ain—l ain
0 af aé a;L_ cﬁn_2 Ay,
n 0 0 af - ap_y a3 a5 9
=> | o or o
=0 o o0 0 - at aé aé
0 0 0 0 aj ab
0 0 O 0 0 aj
b by by o by b, b,
0 b bé e bfk?) bﬁkQ bén
W00 e e w,
g(x)=>_ : ST
— ,
=1 0 0 0 Moo b
0 0 0 0 b b?
0 0 0 0 0 bl
C1 6126 Cl?f CfL—Q Cllcicn—l C]fn
0 clf [:]2c C’I]'CL—?) Cp—2 cgn
0 0 o Cha Chz Chio
and h(z)=> | + =+ ¢ . : : z* € V,(R)[z],
0 0 0 - ¢k ck ck
o 0 0 --- 0 ck ck
0 0 0 -+ 0 0 ck
where fi(z) = XL oal$ f2( ) = i gabz’, - 7fn 2(x) = Xiga;, o',

fin— 1( ) = 21700‘1,71 1_5” s fin(z) = Zz Oa‘lnm f2n( ) = YL Oa’gn iagl( ) =
Emob 2l go(x) = E?objx] o gn—2(z) = 2mobn 27, g1n—1() = XL Obln 127,

gin(z) = L Obln:z: | gon(z) = 7 Ob2nz Since every reduced ring is an Ar-
mendariz ring, we obtain that albj1 = O,albj 0, abt! = 0,dibl = 0,abb}, =
0,a4b] = 0, ,albl_, = 0,abb_5 =0, ,al,_,b] = 0,aib],_, = o,agb{l_Q =
0, af_oby = 0,0, b = 0,aib], = 0,abb}, = 0,a}b), ; =0, ) b} =
0,ai,_1by = 0,ai,b] = 0,aibd, = 0,abb,_, = 0,---,a,,_,b} = 0,a4,b] = 0
for all 4,7 by the preceding results. With these facts and the fact that R is a-
semicommutative ring, we have aﬁcloz(bj) = 0, aicka(b}) = 0, aicka(b)) = 0,
aycia(bl) = 0, alcla(b3) =0 a102a(bj) = 0,dycFa(b)) = 0, aiclga(b{) =
0, a202a(b1) = 0,a5cfa(b]) = 0, -+, alcgna(bjl) = 0, ajep_ 204(17]) =0,
a, - zclzca(bj) =0, a2ncla(bj) =0.

Therefore V;,(R) is strongly a-semicommutative. O

The next result can be proved by using the technique used in the proof of [3,
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Proposition 2.6]. A ring is called Abelian if every idempotent is central. Reduced
rings are clearly Abelian.

Proposition 2.24. Let R be a strongly a-semicommutative ring. Then

(1) «(1) = 1, where 1 is the identity of R, if and only if a(e) = e for any
e?=e€R.

(2) If a(1) =1, then R is Abelian.

Let R be an algebra over a commutative ring S. Recall that the Dorroh extension
of R by S is the ring D = R x S with operations (71, $1)+ (72, $2) = (r1+7r2, 51+ $2)
and (71, 81)(re, $2) = (1172 + s172 + 271, 8182), where r; € R and s; € S. For an
endomorphism « of R, the S-endomorphism @ of D defined by a(r, s) = (a(r), s) is
an S-algebra homomorphism.

Proposition 2.25. If R is a strongly a-semicommutative ring with «(1) =1 and S
18 a domain, then the Dorroh extension D of R by S is strongly &-semicommutative.

Proof. We apply the method in the proof of [3, Proposition 2.8.] Let f(z) =

(f1(2), f2(2)), 9(x) = (91(x),92(x)) € D(x) with (fi(x), f2())(91(2), g2(x)) =
0. Then f1(2)g1() + fa(2)g2(z) + 92(2)f1(z) = 0 and fo(x)ga(x) = 0. Since
S is a domain, we have fa(x) = 0 or ga(z) = 0. If fa(z) = 0, then
fi(@)g (@ )+ fo(@)g2(2) + g2(2) fi(x) = fi(z)g1(x) + g2(2) fi(x) and so
f1 (a:)(gl () + g2(x)) = 0. Since R is strongly a-semicommutative with a(1) = 1,
0 = fi(@)ta(gr(z) + g2(x)) = fr(@)ta(gi(x)) + fi(x)tga(z)), for all t € R. This
skl (1(n), 20310001 (2).01)) = (R + o (@)alan(a) + (o) +
$1(2)g2(x),0) = 0 for any (r, 5) € D, and hence (f1(x), /() Da(g1 (x), 92(x)) =

Now let g2(z) = 0. Then (fi(z) + fo(x))gi(z) = 0, and so 0 = (f (x) —|—
fa(x))Ra(gr(z)) = 0. We similarly obtain (fi(z), fa(z))Da(gi(x), g2(x)) = 0, and
thus the Dorroh extension D is strongly a-semicommutative. o

Corollary 2.26.([17, Proposition 3.17(2)]) Let R be an algebra over a commutative
domain S, and D be the Dorroh extension of R by S. Then R is strongly semicom-
mutative if and only if D is strongly semicommutative.

Note that the condition (1) = 1 in Proposition 2.25 cannot be dropped by the
next example.

Example 2.27. Let R = Zy @ Zo, and let o : R — R defined by «((a, b)) = (0,b).
Consider the Dorroh extension D of R by the ring of integers Z,. We clearly have

((1,0),0)((1,0), =1) = 0, but ((1,0),0)((1,0),0)a((1,0), =1) = ((1,0), 1) # 0 in

D. Thus D is not strongly a-semicommutative.

For an ideal I of R, if a(I) C I, then & : R/I — R/I defined by a(a + I) =
a(a) + I is an endomorphism of the factor ring R/1.

There exists a non-identity automorphism « of a ring R such that R/I is strongly
a-semicommutative and I is strongly a-semicommutative for any nonzero proper
ideal I of R, but R is not strongly a-semicommutative by the next example.

215
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Example 2.28. Let F be a field. Consider the ring R = g ? ) and an
. a b a —b .
endomorphism « of R defined by « 0 ¢ =l ¢ ) Then R is not

strongly a-semicommutative. In fact, for A = ( (1) (1) , B = ( 8 _11 > € R,

1

wehaveAB:(),butO;éA(o

_11 ) a(B) € ARa(B). Note that for the only

nonzero proper ideals of R

F F 0 F 0 F
(o) (0 k) e=(o0)

it can be easily checked that they are strongly a-semicommutative. Since R/I & F
and R/J = F,R/I and R/J are also strongly a-semicommutative. Finally, the
factor ring R/K is reduced and & is an identity map on R/K. Thus, R/K is also
strongly a-semicommutative.

Proposition 2.29. Let R be a ring with an endomorphism «, and I an ideal of
R with o(I) C I. Suppose that R/I is a strongly a-semicommutative ring. If I is
a-rigid as a ring without identity, then R is strongly a-semicommutative.

Proof. Let f(x)g(x) = 0 with f(z), g(z) € R[z]. Then we have f(x)Ra(g(z)

and a(g(z))Ia(f(x)) = 0, since a(g(x))la(f(x)) < I[z], (a((g(x)a(f(x)))* = 0O
and I[z] is reduced. Thus, (f(z)Ra(g(z))I)? = f(x)Ra(g(x))If(z)Ra(g(z))I = 0
and so f(z)Ra(g(x))] =0, thus f(z)Ra(g(z))a(f(z)Ra(g(z))) € f(z)Ra(g(x))] =
0 since f(z)Ra(g(x)) C I[z] and a(I) C I. Then f(x)Ra(g(x)) =0 as I is a-rigid.
Therefore, R is strongly a-semicommutative. O

1N
B

Theorem 2.30. Let a be an endomorphism of a ring R. Then R is strongly -
semicommutative if and only if R[x] is strongly a-semicommutative.

Proof. (<) The converse is obvious since R is a subring of R|x].
(=) Assume that R is strongly a-semicommutative. Let f(y),g(y) € R[x][y]
such that f(y)g(y) = 0. Let

f)=fo+rfiv+-+ ™ 9W) =90+ 91y + -+ gy,

and
h(y) = ho + h1y + -+ + hey" € Rz][y].

We also let f; = a;, + ajx + - + a;, 2™, g; = bjy +bj,x+ -+ +bj /" hy =
Cho + ClyT + -+ + e, af € R[z] for each 0 < i < m,0 < j < n and
0 < k < 7, where a;y, @i, @iy, 050,050, b5, Clgy Clyy - 5k, € R. We
claim that p(y)R[z]q(y) = 0. Take a positive integer k such that & > max
{deg(f:),deg(g;),deg(hi)}, for any 0 < i < m,0 < j < n,0 < k < r, where
the degree is as polynomials in R[x] and the degree of the zero polynomial is taken
to be 0. Let f(z*) = fo+ fiz®+-- -+ fuz™, g(2%) = go+ q12° ++ - -+ gpa"*, h(z*) =
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ho + hix® +---+ h,2™ € R[z]. Then the set of coefficients of the f;’s, g;’s (respec-
tively, hy’s) is equal to the set of coefficients of f(x*®),g(z*®) (respectively, h(z®)).
Since f(y)g(y) = 0,  commutes with elements of R in the polynomial ring R[z],
we have f(x®)g(x®) = 0, in R[z]. Since R is strongly a-semicommutative, we have
f(z®)Ra(g(x®)) = 0. Hence f(y)R[z]a(g(y)) = 0, therefore R[x] is strongly a-

semicommutative. O

Corollary 2.31. Let R be a ring. Then R is strongly semicommutative if and only
if R[z] is strongly semicommutative.

Corollary 2.32. Let a be an endomorphism of a ring R. Then the following are
equivalent:

(1) R is strongly a-semicommutative.
(2) RJz] is strongly a-semicommutative.

(3) R[x;x~1] is strongly a-semicommutative.

Let A(R,a) or A be the subset {z 'a;z'la € R,i > 0} of the skew Laurent
polynomial ring R[x,x71;a], where a : R — R is an injective ring endomorphism
of a ring R (sce [9] for more details). Elements of R[z,z ;al] are finite sums
of elements of the form z~%h;x7, where b € R and i,j are non-negative integers.
Multiplication is subject to za = a(a)z and az™! = x71a(a) for all a € R. Note
that for each j > 0,2 %a;x’ = 2=+l (a;)2 7). Tt follows that the set A(R,a)
of all such elements forms a subring of R[x,z~!;a] with

x a4+ a:fjbjxj = x*(i“)(oﬂ' (a;) + o/(bj))x(”j)

(z " ax") (xijbjxj) = g~ (+9) (a? (ai)ai(bj))x(”j)

for a,b € R and i,7 > 0. Note that « is actually an automorphism of A(R, «). Let
A(R, &) be the ring defined above. Then for the endomorphism « in A(R, &), the
map A(R, a)[t] = A(R, a)[t] defined by

Y (x ar )t — BT (2 (a2t
is an endomorphism of the polynomial ring A(R, &)[t].

Proposition 2.33. Let A(R, «) be an Armendariz ring. If R is a-semicommutative,
then A(R,a) is strongly a-semicommutative.

Proof. Let f(t) = % (z " )t', g(t) = LI o(z77bja?)t! € A(R,a)[t] with
f(t)g(t) = 0. Since A(R,«) is Armendariz, we have (z7'a;z%)(z77bjz?) = 0,
and so = (F9)(ad (a;)ai (b)) = 0. This implies that of(a;)a’(h;) = 0,
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and so a/T*(a;)a’™*(b;) = 0. Hence ajJrk( )Ra”k“(bj) = 0. Since R is a-
semicommutative, for any h(t) = Sp_ (z Fcra®)t? € A(R, a)[t], we have

fOh(t)g(t) = (B o(x ‘aix ')ti)(Eizo(x*’“ckxk)tk)a(E?;o(z*jbjxj)tj)
(EHk ol@ la )(x_kcka:‘k)t”k)A(E?:‘o( _'a(bj)xj)tj)
(ST (@~ R (o (a;) e () )t F)EF) (S7_o (27T (b )a? )17
(57 (200 (0¥ () (ep) ) ) (2T ol Yk
(E’”*{"” (z= TR (0 (o (a;) o (i) o' TF) (cu(by)) (I HR) i+ TR
(= )

SR (om0 (@ )t (et R (b)) (049 )45

As (aF 9 (a;)ai T (e)at R FL(b;) = 0, f(t)h(t)a(g(t)) = 0. So A(R,«) is strongly

a-semicommutative. O

Corollary 2.34. Let A(R,«) be an Armendariz ring. If R is semicommutative,
then A(R,«) is strongly semicommutative.
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