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Abstract. A connected Hausdorff space Y is called a one-point connectification of a

space X if Y contains a copy of X as a dense subspace and Y \X has exactly one point. A

generalized linear graph means a connected subset of a linear graph. In a previous paper

the subspaces of generalized graphs which have a one-point connectification are character-

ized by some conditions. In this note relations between these conditions are analyzed if X

is embedded in a space belonging to a wider class than one of generalized graphs.

Embedding of a space X as a dense subspace of a space Y which satisfies
some special conditions is an old and well known topological construction. The
best known and the most important one is the concept of a compactification. The
reader is referred to [6, Sections 3.5 and 3.6, p. 166-182] for information about this.
Dense embeddings in complete spaces, called completions, are also known, see e.g.
[4]. During the last decade a number of papers appeared devoted to connectifica-
tions, see [1], [7], [8], [9], [15], [19]. In particular [7] contains characterizations of
subsets of the real line which admit a connectification with a one-point set as the
remainder. In [2] these results have been extended replacing the real line by an
arbitrary generalized linear graph (not necessarily metric). In the present note we
provide further investigations in the area.

We will use the standard notation of cardA, clXA, bdXA and intXA for the
cardinality, the closure, the boundary and the interior of a subset A of a space X.
The symbol N stands for the set of positive integers. The term continuum means a
compact connected Hausdorff space. A 1-dimensional continuum is called a curve.
A space is called a generalized continuum if it is locally compact, connected and
Hausdorff. We say that a property holds for almost all points of a set if it holds for
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all save a finite number of points of the set.
A concept of an order of a point p in a space X is used in the sense of Menger-

Urysohn, written ord (p,X). Since the original definition of this concept is formu-
lated for metric spaces, compare e.g. [12, §51, I, p. 274], we recall its definition for
the reader convenience in a general setting (as it is used in this paper). Let n stand
for a cardinal number. We write:

• ord (p,X) ≤ n provided that for each open neighborhood W of p there is an
open neighborhood U of p such that U ⊂W and card bdXU ≤ n;

• ord (p,X) = n provided that ord (p,X) ≤ n and for each cardinal number
m < n the condition ord (p,X) ≤ m does not hold;

• ord (p,X) = ω provided that for each open neighborhood W of p there is
an open neighborhood U of p such that U ⊂ W , the boundary bdXU is
finite and, for various U , the cardinalities card bdXU are not bounded by any
n ∈ N.

Points of order 1 are called end points of the space X, and points of order n ≥ 3
are called ramification points of X.

A continuum Y is said to be a) rational or b) regular (in the sense of theory of
order) if a) ord (y, Y ) ≤ ℵ0 or b) ord (y, Y ) is finite, respectively, for all y ∈ Y , see
[12, §51, I, p. 275].

An arc is defined as a continuum A having exactly two points which do not
separate A, called the end points of the arc; in other words, A is an arc with end
points a and b if each point x ∈ A \ {a, b} separates a and b in A. For a number
k ∈ N the union of k arcs emanating from a single point v and otherwise disjoint
from one another is called a k-od. Then v is called the vertex of the k-od. By a free
arc in a space X we mean an arc ab in X such that the set ab \ {a, b} is open in
X. Recall that a set is called a linear graph (see [20, Chapter 10, p. 182]) provided
that it is the union of a finite set V of points, called vertices, and a finite number
of free arcs, called edges, such that the two end points of each edge are distinct and
belong to V . Thus each linear graph, if connected, is a continuum. The following
characterization of linear graphs among continua is known (see [20, Chapter 10, 1,
(2), p. 182]).

Proposition 1. A continuum is a linear graph if and only if each of its points is
of some finite order and almost all of its points are of order less than or equal to 2.

This implies that for every connected subset B of a linear graph G the boundary
of B (with respect to G) is finite.

A space Z is called a generalized linear graph if it is connected and if it can be
embedded in a linear graph, i.e., if there exists a linear graph G and an embedding
h : Z → G of Z into G. In other words, a space is a generalized linear graph if it
is homeomorphic to a connected subset of a linear graph. Metric generalized linear
graphs are characterized by conditions (i)-(v) of [3, Theorem 1, p. 337]. It can be
observed from the proof of this result given in [3] that metrizability is not used to
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show the equivalence of conditions (i)-(iii). Thus the following is a consequence of
[3, Theorem 1, p. 337] and of the above observation.

Proposition 2. The following conditions are equivalent if Z is a connected space:

(2.1) Z is a generalized linear graph;

(2.2) Z can be embedded in a linear graph G1 by an embedding h1 : Z → G1 in
such a way that the difference G1 \h1(Z) is a compact set;

(2.3) Z can be embedded in a linear graph G2 by an embedding h2 : Z → G2 in
such a way that h2(Z) is a dense subset of G2 and the remainder G2 \h2(Z)
is a finite set of end points of G2.

As an immediate consequence of Proposition 2 we get the following characteri-
zations of noncompact generalized linear graphs:

Proposition 3. The following conditions are equivalent if Z is a connected space:

(3.1) Z is a noncompact generalized linear graph;

(3.2) Z can be embedded in a linear graph G1 by an embedding h1 : Z → G1 in
such a way that the difference G1 \h1(Z) is a nonempty compact set;

(3.3) Z can be embedded in a linear graph G2 by an embedding h2 : Z → G2 in
such a way that h2(Z) is a dense subset of G2 and the remainder G2 \h2(Z)
is a finite nonempty set of end points of G2.

It follows that the real line can be seen as a generalized linear graph.

A (topological) space X is said to be connectifiable provided that it can be
embedded in a connected Hausdorff space Y as a dense subset; then Y is called
a connectification of X, and the difference Y \X is called the remainder of the
connectification. In case when card (Y \X) = 1, i.e., when the remainder of the
connectification is a one-point set, the term of a one-point connectification is used.
Similarly, a space X is said to be pathwise connectifiable provided that X can be
densely embedded in a pathwise connected Hausdorff space Y , and then Y is called
a pathwise connectification of X. A pathwise connected Hausdorff space Y is called
a one-point pathwise connectification of X if it is a pathwise connectification of X
with card (Y \X) = 1.

Note that a subspace of a generalized linear graph is connected if and only if
it is pathwise connected. Thus it is natural to ask if a subspace of a generalized
linear graph is connectifiable if and only if it is pathwise connectifiable. In general
the equivalence is not true (see [8, Example 2.4, p. 17] and compare [7, p. 678]),
but it is shown to be true for one-point connectifications of the real line, see [7,
Theorem, p. 678]. This result has been extended to the one-point connectifications
of generalized linear graphs in [2] as follows.

Theorem 4. Let X be a subspace of a generalized linear graph Z. Then the
following conditions are equivalent:
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(4.1) X has a one-point connectification;

(4.2) X has a one-point pathwise connectification;

(4.3) each component of X is open and non-compact;

(4.4) X is locally connected and each component of X is non-compact.

Questions are asked in [2, Question 6] about a possibility to weaken the assump-
tion in Theorem 4 concerning the space Z (of being a generalized linear graph) and
about particular implications between conditions (4.1)-(4.4). The aim of this note
is to discuss these problems. In the results presented below we consider all possible
implications between the conditions under various assumptions concerning Z.

We start with recalling some two examples mentioned in Remark 5 of [2], to
indicate their new properties needed in the analysis of interrelations between the
considered conditions.

Example 5.The Knaster-Kuratowski biconnected space. Let Y denote the standard
Cantor fan in the plane R2 (i.e., the cone with the vertex v = ( 1

2 ,
1
2 ) over the Cantor

ternary set located on the segment [0, 1]×{0}), and let F be the Knaster-Kuratowski
biconnected space (see e.g. [12, §46, II, Remark, p. 135] or [17, Example 129, p.
145]; the space is called the Knaster-Kuratowski fan in [6, 6.3.23, p. 380]; more
about biconnected spaces in [5] and [18]; compare also [16]). Define X = F \ {v}.
Then:

(5.1) X ⊂ F ⊂ Y ;

(5.2) F is a one-point connectification of X;

(5.3) Y is a pathwise connectification of X;

(5.4) Y is a 1-dimensional continuum;

(5.5) X has no one-point pathwise connectification (see [7, Example 1, p. 679]);

(5.6) X is locally conneted at no of its points;

(5.7) each component of X is a one-point set (see [12, §46, II, Remark, p. 135];
note that there are biconnected spaces that do not have this property, i.e.,
biconnected spaces without dispersion points: see [13, Theorem 8, p. 128] or
[17, Example 131, p. 148]).

Example 6.The topologists sine-curve. Let A = {(x, sin π
x ) : x ∈ (0, 1]}, X =

A ∪ {(0, 0)}, p = (0, y) with 0 6= y ∈ [−1, 1], and Y = clR2A. Then:

(6.1) Y is the well known sin(1/x)-curve;

(6.2) X ∪ {p} is a one-point connectification of X;

(6.3) X has no pathwise connectification at all (see [7, Remark 2, p. 680]);

(6.4) X is not locally connected at the point (0, 0).
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Example 7.The harmonic fan. In the plane R2 let H = {(0, 0)} ∪ {( 1
n , 0) : n ∈ N}

and let Y be the cone over H with the vertex v = (0, 1). Put X = Y \ {v}. Denote
by K the limit component of X, i.e., K = {0} × [0, 1). Then:

(7.1) Y is the homeomorphic to the well known harmonic fan, so it is a rational
plane curve;

(7.2) Y is a one-point (pathwise) connectification of X;

(7.3) the limit component K is not open in X;

(7.3) X is locally connected at no point of the limit component K.

Statement 8. If a generalized linear graph Z in Theorem 4 is replaced by a locally
connected plane curve, then condition (4.1) need not imply any of the conditions
(4.2), (4.3) and (4.4).

Proof. Let Z denote the Sierpiński universal plane curve. Then Z is locally con-
nected. If X and Y are as in Example 5, then Y , being a plane curve by (5.4), can
be embedded in Z. So we can assume that X ⊂ Y ⊂ Z. Thus X satisfies (4.1)
according to (5.2) and it does not satisfy (4.2) by (5.5). Further, no component of
X is open and each one of them is compact. Thus X satisfies neither (4.3) nor (4.4)
even in such strong form as indicated. 2

Statement 9. If a generalized linear graph Z in Theorem 4 is replaced by a rational
plane curve, then condition (4.1) need not imply any of the conditions (4.2), (4.3)
and (4.4).

Proof. a) To see that (4.1) need not imply (4.2) and (4.4), let X and Y be as in
Example 6, and define Z = Y . Then Z is a rational plane curve by (6.1), X satisfies
(4.1) according to (6.2) and it does not satisfy (4.2) by (6.3). Further, X is not
locally connected by (6.4), so (4.4) is not satisfied.

b) To see that (4.1) need not imply (4.3), let Z = Y be the harmonic fan with
the vertex v and let X = Y \ {v} as in Example 7. Then the conclusion holds by
(7.2) and (7.3). 2

Remark 10. Observe that Example 6 shows that if a rational curve is substituted
in place of a generalized linear graph Z in Theorem 4, then condition (4.1) need not
imply the existence of any (not only one-point) pathwise connectification, according
to (6.3).

Note that if X is a subspace of an arbitrary space Z, then (4.2) trivially implies
(4.1). The other two implications from (4.2) are not true. The next statement
shows this.

Statement 11. If a generalized linear graph Z in Theorem 4 is replaced either by
a locally connected plane curve or by a rational plane curve, then condition (4.2)
need not imply any of the conditions (4.3) and (4.4).

Proof. a) Let Z denote the Sierpiński universal plane curve, and let X and Y be
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as in Example 7. Without loss of generality we may assume that X ⊂ Y ⊂ Z.
Then (4.2) holds by (7.2), while (4.3) and (4.4) are not satisfied by (7.3) and (7.4),
respectively.

b) Defining Z = Y in Example 7 we argue as in a) above. 2

The following result is due to J. R. Prajs.

Theorem 12 (Prajs). For each topological space X having a metrizable compact-
ification condition (4.3) implies condition (4.1).

Proof. Let a topological space X have a metrizable compactification and satisfy
condition (4.3). Then X has at most countably many components. Denote by Y a
compactification of X such that:

(12.1) Y is a subset of the Hilbert cube;

(12.2) for each component C of X ⊂ Y its closure clY (C) (in Y ) is an open subset
of Y .

Then the difference

D = Y \
⋃
{clY (C) : C is a component of X}

is a closed subset of Y . For each component C of X choose a point p(C) ∈
clY (C) \X and let E be the set of the chosen points. Denote F = D∪E. Then the
quotient space Y/F is a one-point connectification of X. 2

Question 13. Is having a metrizable compactification of the space X an essential
assumption in Theorem 12?

Statement 14. If a generalized linear graph Z in Theorem 4 is replaced either by
a locally connected plane curve or by a rational plane curve, then condition (4.3)
need not imply any of the conditions (4.2) and (4.4).

Proof. Define X as in Example 6. Since X is connected, condition (4.3) is satisfied
by the definition of X. Take as Z either the Sierpiński universal plane curve, or
the topologists sine-curve Y . As previously we can assume that X ⊂ Y ⊂ Z. Then
(4.2) does not hold according to (6.3). By (6.4) condition (4.4) does not hold, too.
2

Remark 15. Observe that in Statement 14 one can consider as Z any space con-
taining X of Example 6. Furthermore, one can take as X an arbitrary connected,
non-locally connected and non-compact space, and as Z any space containing such
X to see that (4.3) does not imply (4.4) in general.

Statement 16. For each topological space X condition (4.4) implies condition
(4.3).

Proof. Indeed, the implication is known, see e.g. [12, §49, II, Theorem 4, p. 230].2
As a consequence of Theorem 12 and Statement 16 we get the following.
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Corollary 17. For each topological space X having a metrizable compactification
condition (4.4) implies condition (4.1).

Example 18. The Knaster-Kuratowski subset of the triangular Sierpiński curve.
Let Y denote the triangular Sierpiński curve in the plane (see e.g. [12, §51, I,
Example 6 and Fig. 9, p. 270] or [11, Sections 2 and 3, p. 106-107]). Let X be
the connected and locally connected subset of Y containing no perfect subset, as
constructed in [11] (for a connected and locally connected subset of the unit square
containing no arc see [14]). Then:

(18.1) Y is a regular plane curve;

(18.2) X contains the (countable) set of vertices of all triangles considered in the
construction of Y , so it is a dense subset of Y ;

(18.3) X is not compact by its definition, and Y is a compactification of X;

(18.4) X contains no arc (because it contains no perfect subset by construction);

(18.5) X has a one-point connectification (according to (18.3) and Corollary 17).

Statement 19. If a generalized linear graph Z in Theorem 4 is replaced by a reg-
ular plane curve, then condition (4.4) need not imply condition (4.2).

Proof. Define X and Y as in Example 18, and put Z = Y . Then by (18.1) X is
a subset of the regular plane curve Z. Further, X is locally connected by its con-
struction, and since it is connected, it satisfies condition (4.4) according to (18.3).
By (18.5) there exists a one-point connectification of X. No such connectification
can be pathwise connected because otherwise X contains an arc, contrary to (18.4).
Thus X does not satisfy (4.2). 2

Remark 20. Note that if metrizability is not assumed, then the space
X = {(x, y) : x, y ∈ [0, 1]} \ {(1, 1)} ordered lexicographically (see e.g. [17, Example
48, p. 73] or [6, 3.12.3 (d), p. 221]) satisfies (4.4) but not (4.2).
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