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ABSTRACT. We introduce the notion of Lie invariant normal Jacobi operators for real
hypersurfaces in the complex hyperbolic quadric Q™" = SOy, 2/S0m SOz . The invariant
normal Jacobi operator implies that the unit normal vector field N becomes 2-principal
or A-isotropic. Then in each case, we give a complete classification of real hypersurfaces
in @™ = 803,,2/50,SO2 with Lie invariant normal Jacobi operators.

1. Introduction

When we consider Hermitian symmetric spaces of rank 2, we can usually give
examples of Riemannian symmetric spaces SUp,y2/S(U2U,,) and SUs 1, /S(U2Up, ),
which are said to be complex two-plane Grassmannians and complex hyperbolic
two-plane Grassmannians respectively (see [21, 22, 23] ). These are viewed as Her-
mitian symmetric spaces and quaternionic Kahler symmetric spaces equipped with
the Kahler structure J and the quaternionic Kéhler structure J.

In the complex projective space CP™+! and the quaternionic projective space
QP™*! some classifications related to commuting Ricci tensor were investigated by
Kimura [5, 6], Pérez [13] and Pérez and Suh [14, 15] respectively. The classification
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problems of the complex 2-plane Grassmannian G2 (C™*2) = SU,, 12/S(UU,,) with
various geometric conditions were discussed in Jeong, Kim and Suh [4], Pérez [13],
and Suh [21, 22, 29], where the classification of contact hypersurfaces, parallel Ricci
tensor, harmonic curvature and Jacobi operator of a real hypersurface in Go(C™*2)
were extensively studied.

Another example of Hermitian symmetric space with rank 2 having non-
compact type different from the above ones, is the complex hyperbolic quadric
508 ,,/50250,,. 1t is a simply connected Riemannian manifold whose curvature
tensor is the negative of the curvature tensor of the complex quadric Q™ (see Besse
[2], Helgason [3], and Knapp [10]). The complex hyperbolic quadric also can be
regarded as a kind of real Grassmann manifolds of non-compact type with rank 2
. Accordingly, the complex hyperbolic quadric Q™" admits two important geomet-
ric structures, a complex conjugation structure A and a Kéhler structure J, which
anti-commute with each other, that is, AJ = —JA. For m>2 the triple (Q™", J, g)
is a Hermitian symmetric space of non-compact type and its maximal sectional cur-
vature is equal to —4 (see Klein [7], Kobayashi and Nomizu [11], and Reckziegel
[16]).

Two last examples of different Hermitian symmetric spaces with rank 2 in
the class of compact type or non-compact type, are the complex quadric Q™ =
SOm12/50,S0;3 or the complex hyperbolic quadric Q™" = SO3 ,,/SO,,50,,
which are a complex hypersurface in complex projective space CP™! or in com-
plex hyperbolic space respectively(see Romero [17, 18], Suh [24, 25], and Smyth
[19]). The complex quadric Q™ or the complex hyperbolic quadric @™* can be re-
garded as a kind of real Grassmann manifold of compact or non-compact type with
rank 2 respectively(see Helgason [3], Kobayashi and Nomizu [11]). Accordingly,
the complex quadric Q™ and the complex hyperbolic quadric Q™" both admit two
important geometric structures, a complex conjugation structure A and a Ké&hler
structure .J, which anti-commute with each other, that is, AJ = —JA (see Klein [7]
and Reckziegel [16]).

Now let us introduce a complex hyperbolic quadric Q™* = SO, 5 /S50250,,,
which can be regarded as a Hermitian symmetric space with rank 2 of noncompact
type. Montiel and Romero [12] proved that the complex hyperbolic quadric Q™*
can be immersed in the indefinite complex hyperbolic space CH|"™!(—c), ¢ > 0,
by interchanging the Kéhler metric with its opposite. Changing the Kéhler metric
of CP™} with its opposite, we have that Q7__ endowed with its opposite metric
g = —g is also an Einstein hypersurface of C’H;‘jll(—c). When s = 0, we know
that (Q",g" = —g) can be regarded as the complex hyperbolic quadric @™* =

S0y, 2/S80280,,, which is immersed in the indefinite complex hyperbolic quadric
CH"™'(—¢), ¢ > 0 as a space-like complex Einstein hypersurface.

Apart from the complex structure J there is another distinguished geometric
structure on @™, namely a parallel rank two vector bundle 2 which contains a S'-
bundle of real structures. Note that these real structures are complex conjugations
A on the tangent spaces of the complex hyperbolic quadric Q™*. This geometric
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structure determines a maximal 2-invariant subbundle Q of the tangent bundle 7'M
of a real hypersurface M in the complex hyperbolic quadric Q™.

Recall that a nonzero tangent vector W' € Tp,jQ™" is called singular if it is
tangent to more than one maximal flat in Q™*. There are two types of singular
tangent vectors for the complex hyperbolic quadric Q™" as follows:

1. If there exists a conjugation A € 2 such that W € V(A), then W is singular.
Such a singular tangent vector is called 2-principal.

2. If there exist a conjugation A € 2 and orthonormal vectors X,Y € V(A)
such that W/||W|| = (X + JY)/v/2, then W is singular. Such a singular
tangent vector is called 2A-isotropic.

Here V(A) = {X € T;;)Q™" : AX = X} and JV(A) = {X € T,;Q™" : AX =
—X1}, [¢] € Q™" are the (+1)-eigenspace and (—1)-eigenspace for the involution A
on T, Q™" [z] € Q™.

When we consider a hypersurface M in the complex hyperbolic quadric Q™",
under the assumption of some geometric properties the unit normal vector field N
of M in Q™" can be divided into two cases depending on whether N is 2-isotropic
or AU-principal (see [27, 28, 30, 31]). In the first case where N is 2-isotropic, we have
shown in [27] that M is locally congruent to a tube over a totally geodesic complex
hyperbolic space CH* in the complex hyperbolic quadric Q2" . In the second case,
when the unit normal N is A-principal, we proved that a contact hypersurface M
in the complex hyperbolic quadric Q™" is locally congruent to a tube over a totally
geodesic and totally real submanifold RH™ in Q™" or a horosphere (see Suh [9],
and Suh and Hwang [30]).

Usually, Jacobi fields along geodesics of a given Riemannian manifold M satisfy
a well known differential equation. Naturally the classical differential equation
inspires the so-called Jacobi operator. That is, if R is the curvature operator of M,
the Jacobi operator with respect to X at z€M, is defined by

(RxY)(2) = (R(Y, X)X)(2)

for any Y€T, M. Then Rxc€End(T, M) becomes a symmetric endomorphism of the
tangent bundle TM of M. Clearly, each tangent vector field X to M provides a
Jacobi operator with respect to X.

From such a view point, in the complex hyperbolic quadric Q™" the normal
Jacobi operator Ry is defined by

Ry = R(-,N)N€End (T.M), z2eM

for a real hypersurface M in the complex hyperbolic quadric Q™" with unit normal
vector field N, where R denotes the curvature tensor of the complex hyperbolic
quadric Q™*. Of course, the normal Jacobi opeartor Ry is a symmetric endomor-
phism of M in the complex hyperbolic quadric Q™.
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The normal Jacobi operator Ry of M in the complex hyperbolic quadric Q™"
is said to be Lie invariant if the operator Ry satisfies

0= (LxRN)Y
for any X,Y €T, M, z€ M, where the Lie derivative (£xRy)Y is defined by

(1.1) (ExRN)Y =[X,Rn(Y)] = Rn([X,Y])
ZVX(RN(Y)) - VRN(Y)X — RN(VXY - VyX)
:(VxRN)Y - VRN(Y)X -+ RN(VyX).

For real hypersurfaces in the complex quadric Q@™ we investigated the notions
of parallel Ricci tensor, harmonic curvature and commuting Ricci tensor, which are
respectively given by VRic = 0, dRic = 0 and Ric-¢ = ¢-Ric (see Suh [25], [26],
and Suh and Hwang [29]). But from the assumption of Ricci parallel or harmonic
curvature, it was difficult for us to derive the fact that either the unit normal vector
field N is 2-isotropic or 2A-principal. So in [25] and [26] we gave a classification
with the further assumption of 2-isotropic. Also in the study of complex hyperbolic
quadric Q™" we also have some obstructions to get the fact that the unit normal
N is singular.

In the paper due to Suh [27] we investigate this problem of isometric Reeb
flow for the complex hyperbolic quadric Q™* = 503 ., /50,,505. In view of the
previous results, naturally, we expected that the classification might include at least
the totally geodesic Q™" € Q™*. But, the results are quite different from our
expectations. The totally geodesic submanifolds of the above type are not included.
Now we introduce the classification as follows:

Theorem 1.1. Let M be a real hypersurface of the complex hyperbolic quadric
Q™" = S03,,/50,S02, m > 3. The Reeb flow on M is isometric if and only if
m is even, say m = 2k, and M is an open part of a tube around a totally geodesic
CH* c Q*" or a horosphere whose center at infinity is A-isotropic singular.

But fortunately, when we consider Lie invariant normal Jacobi operator, that
is., Lx Ry = 0 for any tangent vector field X on M in Q™", we can assert that the
unit normal vector field N becomes either A-isotropic or 2-principal as follows:

Theorem 1.2. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Q™*, m>3, with Lie invariant normal Jacobi operator. Then the unit normal vector
field N is singular, that is, N is A-isotropic or A-principal.

Then motivated by Theorem 1.1 and Theorem 1.2, we can give a complete
classification for real hypersurfaces in Q™" with invariant normal Jacobi operator
as follows:

Theorem 1.3. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Q™*, m>3 with Lie invariant normal normal Jacobi operator. Then M is locally
congruent to a tube of radius v over a totally geodesic CH* in Q**” or a horosphere
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whose center at infinity is A-isotropic singular.

2. The Complex Hyperbolic Quadric

In this section, let us introduce a new known result of the complex hyperbolic
quadric Q™" different from the complex quadric ™. This section is due to Klein
and Suh [9], and Suh [28].

The m-dimensional complex hyperbolic quadric Q™" is the non-compact dual
of the m-dimensional complex quadric @™, which is a kind of Hermitian symmetric
space of non-compact type with rank 2 (see Besse [2], and Helgason [3]).

The complex hyperbolic quadric Q™™ cannot be realized as a homogeneous
complex hypersurface of the complex hyperbolic space CH™ L. In fact, Smyth [20,
Theorem 3(ii)] has shown that every homogeneous complex hypersurface in CH™**
is totally geodesic. This is in marked contrast to the situation for the complex
quadric Q™, which can be realized as a homogeneous complex hypersurface of the
complex projective space CP™*! in such a way that the shape operator for any unit
normal vector to Q™ is a real structure on the corresponding tangent space of Q™,
see [7] and [16]. Another related result by Smyth, [20, Theorem 1], which states that
any complex hypersurface CH™*! for which the square of the shape operator has
constant eigenvalues (counted with multiplicity) is totally geodesic, also precludes
the possibility of a model of Q™* as a complex hypersurface of CH™*! with the
analogous property for the shape operator.

Therefore we realize the complex hyperbolic quadric Q™" as the quotient
manifold SOY,,/S0250,,. As Q' is isomorphic to the real hyperbolic space
RH? = S0O9,/S0,, and Q2" is isomorphic to the Hermitian product of complex
hyperbolic spaces CH' x CH', we suppose m > 3 in the sequel and throughout this
paper. Let G := SOgym be the transvection group of @™* and K := S0550,, be
the isotropy group of Q™™ at the “origin” pgy := eK € Q™. Then

0:G =G, grsgs !t with s:= 1

is an involutive Lie group automorphism of G with Fix(c)g = K, and therefore

Q™" = G/K is a Riemannian symmetric space. The center of the isotropy group

K is isomorphic to SOs, and therefore Q™" is in fact a Hermitian symmetric space.
The Lie algebra g := so3 ,,, of G is given by

g={Xegllm+2,R): X" -s=-5-X}

(see [10, p. 59]). In the sequel we will write members of g as block matrices with
respect to the decomposition R™12 = R @ R™, i.e. in the form

X =(xix)
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where X711, X12, Xo1, Xoo are real matrices of the dimension 2 X 2, 2 x m, m x 2
and m x m, respectively. Then

9= { (%i §§§) D X1y =~ X, Xip = Xoi, Xgp = —Xo» } .

The linearisation oy, = Ad(s) : g — g of the involutive Lie group automorphism o
induces the Cartan decomposition g = £ ® m, where the Lie subalgebra

t =Eig(0.,1) ={X €g:sXs ' = X}
={ (0 X)) ¢+ X1 =—Xu, Xbh = —Xan }
=509 D 50,
is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace
m = Eig(o.,~1) ={X €g:sXs ' =X} ={ (), ?) : X{, = X0 }

is canonically isomorphic to the tangent space T},,Q™". Under the identification
Tp, Q™" = m, the Riemannian metric g of @™ (where the constant factor of the
metric is chosen so that the formulae become as simple as possible) is given by

1
g(X,Y) = Qtr(Yt - X)=tr(Yi2- Xo1) for X, Y em.

g is clearly Ad(K)-invariant, and therefore corresponds to an Ad(G)-invariant Rie-
mannian metric on Q™*. The complex structure J of the Hermitian symmetric
space is given by

JX =Ad(j)X for X €m, where j:= 1 e K.
"1
Because j is in the center of K, the orthogonal linear map J is Ad(K)-invariant, and
thus defines an Ad(G)-invariant Hermitian structure on Q™*. By identifying the
multiplication with the unit complex number ¢ with the application of the linear map
J, the tangent spaces of Q™" thus become m-dimensional complex linear spaces,
and we will adopt this point of view in the sequel.

Like for the complex quadric (again compare [7, 8, 16]), there is another impor-
tant structure on the tangent bundle of the complex quadric besides the Riemannian
metric and the complex structure, namely an S'-bundle 2 of real structures. The
situation here differs from that of the complex quadric in that for Q™ the real
structures in 2 cannot be interpreted as the shape operator of a complex hypersur-
face in a complex space form, but as the following considerations will show, 2 still
plays an important role in the description of the geometry of Q™.

Let
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Note that we have ag ¢ K, but only ay € O3 SO,,. However, Ad(ap) still leaves
m invariant, and therefore defines an R-linear map Ay on the tangent space m =
TpoQ™". Ao turns out to be an involutive orthogonal map with Ago J = —J o Ay
(i.e. Ap is anti-linear with respect to the complex structure of T,,,Q™"), and hence
a real structure on T),,Q™". But Ay commutes with Ad(g) not for all g € K, but
only for g € SO, C K. More specifically, for g = (g1,92) € K with g; € SO,
cos(t) — sm(t)) with ¢t € R (so that Ad(gy) corresponds to

sin(t) cos(t)
multiplication with the complex number p := e%), we have

AgoAd(g) =~ - Ad(g) 0 A .

and go € SO, say g1 = <

This equation shows that the object which is Ad(K)-invariant and therefore geo-
metrically relevant is not the real structure Ay by itself, but rather the “circle of

real structures”
A, = {NAp|\ € S'}.

2, is Ad(K)-invariant, and therefore generates an Ad(G)-invariant S*-subbundle
2A of the endomorphism bundle End(TQ™"), consisting of real structures on the
tangent spaces of Q™. For any A € 2, the tangent line to the fibre of 2 through
A is spanned by JA.

For any p € Q™" and A € 2, the real structure A induces a splitting

T,Q"* =V (A) @ JV(A)

into two orthogonal, maximal totally real subspaces of the tangent space T,Q™".
Here V(A) resp. JV(A) are the (+1)-eigenspace resp. the (—1)-eigenspace of A.
For every unit vector Z € T,Q™" there exist t € [0, 5], A € 2, and orthonormal
vectors X,Y € V(A) so that

Z =cos(t) - X +sin(t) - JY

holds; see [16, Proposition 3]. Here ¢ is uniquely determined by Z. The vector Z
is singular, i.e. contained in more than one Cartan subalgebra of m, if and only if
either t = 0 or t = 7 holds. The vectors with ¢ = 0 are called ™A-principal, whereas
the vectors with ¢ = 7 are called 2-isotropic. If Z is regular, i.e. 0 <t < 7 holds,
then also A and X,Y are uniquely determined by Z.

Like for the complex quadric, the Riemannian curvature tensor R of Q™* can be
fully described in terms of the “fundamental geometric structures” g, J and 2. In
fact, under the correspondence T, Q™" = m, the curvature R(X,Y)Z corresponds
to —[[X,Y], Z] for X, Y, Z € m, see [11, Chapter XI, Theorem 3.2(1)]. By evaluating
the latter expression explicitly, one can show that one has

(2.1) R(X,Y)Z =—g(Y,2)X + g(X,2)Y
—g(JY,2)JX + g(JX,2)JY +29(JX,Y)JZ
— g(AY, 2)AX + g(AX, Z)AY
— g(JAY, Z)JAX + g(JAX, Z)JAY
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for arbitrary A € . Therefore the curvature of Q™" is the negative of that of the
complex quadric Q™, compare [16, Theorem 1]. This confirms that the symmetric
space Q™" which we have constructed here is indeed the non-compact dual of the
complex quadric.

Let M be a real hypersurface in complex hyperbolic quadric Q™ and denote by
(¢,€,7,9) the induced almost contact metric structure on M and by V the induced
Riemannian connection on M. Note that £ = —JN, where N is a (local) unit
normal vector field of M. The vector field £ is known as the Reeb vector field of
M. If the integral curves of £ are geodesics in M, the hypersurface M is called a
Hopf hypersurface. The integral curves of £ are geodesics in M if and only if £ is a
principal curvature vector of M everywhere. The tangent bundle TM of M splits
orthogonally into TM = CHTF, where € = ker(n) is the maximal complex subbundle
of TM and F = RE{. The structure tensor field ¢ restricted to € coincides with the
complex structure J restricted to €, and we have ¢¢ = 0. We denote by vM the
normal bundle of M.

We first introduce some notations. For a fixed real structure A € 2l;; and
X € T},)M we decompose AX into its tangential and normal component, that is,

AX = BX + p(X)N
where BX is the tangential component of AX and
p(X) = g(AX,N) = g(X, AN) = g(X, AJE) = g(J X, AS).
Since JX = ¢X +n(X)N and A = BE + p(§)N we also have
p(X) = g(¢X, BE) +n(X)p(§) = n(BeX) +n(X)p(§)-
We also define

At each point [z] € M we define
Q[z] = {X S T[Z]M :AX € T[Z]M for all A € Ql[z]},

which is the maximal 2l;j-invariant subspace of T;;M. Then by using the same
method for real hypersurfaces in complex hyperbolic quadric Q™" as in Berndt and
Suh [1] we get the following

Lemma 2.1. Let M be a real hypersurface in complex hyperbolic quadric Q™.
Then the following statements are equivalent:

(i) The normal vector N, of M is 2-principal,
(il) Q= Cpys
(iii) There exists a real structure A € A, such that AN, € Cyp, M.
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Assume now that the normal vector N|.; of M is not RA-principal. Then there
exists a real structure A € %A, such that

Np.) = cos(t)Zy + sin(t)J Zs
for some orthonormal vectors Z1, Z; € V(A) and 0 < ¢t < 7. This implies
(22) AN[Z} = COS(t)Zl — sin(t)JZg,
f[z} = Sin(t)ZQ — COS(t)JZl,
A&, =sin(t) Za + cos(t)J Z1,

and therefore Q) = T1,1Q™ © ([Z1] © [Z2]) is strictly contained in €C,;. Moreover,
we have

A&y = BEp,) and p(§),) = 0.
We have

9(BEz) + 6821, Npzp) = 0,
9(BE&y + 0821, €1) = 0,
9(BEy + 62y, BEL) + 68, = sin®(2¢),

where the function § denotes § = —g(¢&, A€) = —(sin®t — cos? t) = cos 2t. Therefore

U = M(Bf[z] + 01))

is a unit vector in C,) and
Cle] = Q2 © [U}] (orthogonal direct sum).

If N is not RA-principal at [2], then N is not 2-principal in an open neighborhood
of [z], and therefore U is a well-defined unit vector field on that open neighborhood.
We summarize this in the following

Lemma 2.2. Let M be a real hypersurface in complex hyperbolic quadric Q™" whose
unit normal Np;j is not A-principal at [z]. Then there exists an open neighborhood
of [z] in M and a section A in 2 on that neighborhood consisting of real structures
such that

() A€ = BE and p(€) = 0,
(ii) U = (BE+ §8)/||BE + 6| is a unit vector field tangent to C,
(iif) € =9 [U].
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3. Some General Equations

Let M be a real hypersurface in the complex hyperbolic quadric Q™" and denote
by (#,&,7n,g) the induced almost contact metric structure. Note that £ = —JN,
where N is a (local) unit normal vector field of M and 7 the corresponding 1-form
defined by n(X) = g(&, X) for any tangent vector field X on M. The tangent bundle
TM of M splits orthogonally into TM = € @ RE, where € = ker(n) is the maximal
complex subbundle of TM. The structure tensor field ¢ restricted to € coincides
with the complex structure J restricted to €, and ¢& = 0.

At each point z € M we define a maximal A-invariant subspace of T, M, ze M
as follows:

Q,={XeT.M:AX € T.M forall Ae2,}.

Then we want to introduce an important lemma which will be used in the proof of
our main Theorem in the introduction.

Lemma 3.1.([24]) For each z € M we have
(i) If N, is A-principal, then Q, = C,.

(ii) If N, is not A-principal, there exist a conjugation A € A and orthonormal
vectors X,Y € V(A) such that N, = cos(t) X +sin(t)JY for somet € (0,7/4].
Then we have Q, =C, 6 C(JX +Y).

From the explicit expression of the Riemannian curvature tensor of the com-
plex hyperbolic quadric Q™" we can easily derive the Codazzi equation for a real
hypersurface M in Q™™:

(3.1) 9((VxS)Y — (VyS)X, Z)
=—n(X)g(8Y, Z) + n(Y)g9(¢X, Z) + 2n(Z)g(¢X,Y')
— p(X)g(BY, Z) + p(Y )g(BX, Z)
+ n(BX)g(BY, 6Z) + n(BX)p(Y ) (Z)
— n(BY)g(BX, ¢Z) — n(BY)p(X)n(Z).
We now assume that M is a Hopf hypersurface. Then the shape operator S of M

in Q™" satisfies

S&E=af

with the smooth function o = ¢g(S¢,€) on M. Inserting Z = ¢ into the Codazzi
equation leads to

9(Vx9)Y — (VyS8)X,§) =29(¢X,Y) = 2p(X)n(BY) + 2p(Y )n(BX).
On the other hand, we have

(3.2) 9(Vx9)Y — (VyS5)X,§)
=g9((Vx9)&,Y) — g((VyS5)E, X)
=da(X)n(Y) — da(Y)n(X) + ag((S¢ + ¢S)X,Y) — 2g(SpSX,Y).
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Comparing the previous two equations and putting X = ¢ yields
do(Y) = da(§)n(Y) 4 20p(Y),
where the function 6 = —g(A&,€) and p(Y) = g(AN,Y) for any vector field Y on
M in Q™.
Reinserting this into the previous equation yields
g(VxS)Y = (VyS8)X, &) = =26n(X)p(Y) + 25p(X)n(Y’)
+ ag((pS + SP)X,Y) — 29(SpSX,Y).

Altogether this implies

(3.3) 0=2¢g(S¢pSX,Y) — ag((¢S + S9)X,Y) + 2g(¢X,Y)
= 26p(X)n(Y) = 2p(X)n(BY) + 2p(Y)n(BX) + 26n(X)p(Y)
=g((25¢S — a(pS + Sé) +26)X,Y)
—2p(X)n(BY +46Y) +2p(Y)n(BX + 6X)
=g((25¢S — (¢S + S¢) +2¢)X,Y)
—2p(X)g(Y, BE + 6€) + 29(X, BE 4 66)p(Y).
If AN = N we have p = 0, otherwise we can use Lemma 2.2 to calculate p(Y) =
g(Y,AN) = g(Y,AJE) = —g(Y, JAE) = —g(Y, JBE) = —g(Y, $BE). Thus we have
proved

Lemma 3.2. Let M be a Hopf hypersurface in Q™*, m > 3. Then we have
(2595 — a(¢S + S¢) + 2¢) X = 2p(X)(BE + 6¢) + 29(X, B + 6§)9BE.

If the unit normal vector field N is 2A-principal, we can choose a real structure
A € 2 such that AN = N. Then we have p = 0 and ¢ B¢ = —¢¢ = 0, and therefore

25¢S — a(dS + S¢) = —2¢.
If N is not 2A-principal, we can choose a real structure A € 2 as in Lemma 2.2 and
get
p(X)(BE + 6€) + g(X, BE + 6§)pBE
= —9(X,9(BE 4 66))(BE + 6¢) + g(X, BE + 68)p(BE + 6€)
= [[BE+ P (9(X,U)gU — g(X, 9U)U)
= sin®(2t)(9(X, U)gU — g(X, ¢U)U),

which is equal to 0 on Q and equal to sin2(2t)q§X on C© Q. Altogether we have
proved:

Lemma 3.3. Let M be a Hopf hypersurface in Q*™, m > 3. Then the tensor field
25¢S — a(dS + S¢)
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leaves Q and € © Q invariant and we have
25¢S — a(dS + S¢p) = —2¢ on Q

and
25¢S — a(pS 4+ Sp) = —26%p on C© Q,

where § = cos 2t as in section 3.

4. Invariant Normal Jacobi Operator and a Key Lemma

By the curvature tensor R of (2.1) for a real hypersurface in the complex hyper-
bolic quadric Q™" in section 2, the normal Jacobi operator Ry is defined in such a
way that

Ry(X) = R(X,N)N
=—-X—g(JN,N)JX + g(JX,N)JN +2g(JX,N)JN
— g(AN,N)AX + g(AX,N)AN — g(JAN,N)JAX + g(JAX,N)JAN

for any tangent vector field X in T, M and the unit normal N of M in T,Q™",
2€Q™*. Then the normal Jacobi operator Ry becomes a symmetric operator on
the tangent space T, M, zeM, of Q™*. From this, by the complex structure J and
the complex conjugations A € 2, together with the fact that g(A¢, N) = 0 and
&€ = —JN in section 3, the normal Jacobi operator Ry is given by

(4.1) Ry(Y) =Y = 39(Y)¢ — g(AN, N)AY
+ g(AY,N)AN + g(AY, &) A

for any Y €T, M, z€M. Then the derivative of Ry is given by

(4.2) (VxRN)Y = Vx(Rn(Y)) — Ry (VxY)
==3(Vxn)(Y)§ = 3n(Y)Vx§
—{9(Vx(AN),N) + g(AN,Vx N)}AY
— g(AN,N){Vx(AY) — AVxY}
+{9(Vx(AY) — AVxY,N) + g(AY,VxN)}AN
+g(AY,N)Vx(AN)
+{9(Vx(AY) — AVxY,£)AE + g(AY, Vx &) YAE
+ g(AY, )V x (A¢),

where the connection V on the complex hyperbolic quadric Q™" is given by

Vx(AY) - AVxY = (VxA)Y + AVxY — AVxY
= ¢(X)JAY + Ao(X,Y)
= q(X)JAY + g(SX,Y)AN.
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From this, together with the invariance of Lx Ry = 0 in (1.1), it follows that

(4.3) Vi X — Ry(Vy X)

=(VxRpy)Y

=—39(¢SX,Y)E = 3n(Y)pSX
—{¢(X)g(JAN,N) — g(ASX,N) — g(AN,SX)} AY
— g(AN, N){q(X)JAY + g(SX,Y)AN}
+{q¢(X)g(JAY,N) + g(SX,Y)g(AN,N)}AN
— g(AY,SX)AN + g(AY,N){(VxA)N + AVx N}
+9((VxA)Y, )AL + g(AY, $SX + 0(X,€)) AL
+ g(AY, &)V x (A¢€),

where we have used the equation of Gauss Vx¢& = Vx¢& + o(X,€), 0(X,€) denotes
the normal bundle 7+ M valued second fundament tensor on M in Q™*. From this,
putting Y = ¢ and using (VxA)Y = ¢(X)JAY, and VxN = —SX we have
(4.4) ViveX — Bn(VeX)
= (VxRy)E = —3¢SX

—{¢(X)g(JAN,N) — g(ASX,N) — g(AN, SX)} A¢

—9(AN, N){q(X)JAL + g(SX,§) AN}

+{a(X)g(JAE, N) + g(SX,§)g(AN, N)} AN

— g(A&, SX)AN + g(q(X)JAE, §) A¢

+ 9(AE, dSX + 0(X, §))AL

+ (A& EH{a(X)JAL + ApSX + g(SX, ) AN.

From this, by taking the inner product with the unit normal N, we have

(4.5) —g(A&, SX)g(AN,N) + g(A&, E){q(X)g(JAE, N)
+9(ApSX, N) + g(SX,€)g(AN,N)} = 0.

Then by putting X = £ and using the assumption of Hopf, we have

(4.6) q(€)g(AE, €)? = 0.

This gives that ¢(§) = 0 or g(A&,&) = 0. The latter case implies that the unit
normal N is -isotropic. Now we only consider the case ¢(£) = 0.
We put Y = ¢ in (4.1). Then it follows that

Ry (§) = =46 — {g(AN, N) — g(Ag,€)}AE = —4¢ — 2g(AN, N) A¢,

where we have used that g(A&, &) = g(AJN,JN) = —g(JAN,JN) = —g(AN, N).
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Differentiating this one, it follows that
(4.7) VineX — Rn(VeX)
= (VxRn)¢
— 4V x¢ — 2{g(Vx (AN), N)AE + g(AN, Vx N) A¢}
— 2g(AN, N)V x (A¢€).

Then, by putting Y = £, and taking the inner product of (4.7) with the unit normal
N, we have

9(AN, N){a(£)g(A¢E, €) — ag(AE, §)} = 0.
From this, together with ¢(£) = 0, it follows that

(4.8) ag(Ag,§)g(AN, N) = 0.
Then from (4.8) we can assert the following lemma.

Lemma 4.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Q™*, m>3, with parallel normal Jacobi operator. Then the unit normal vector field
N is A-principal or A-isotropic.

Proof. When the Reeb function « is non-vanishing, the unit normal N is -isotropic.
When the Reeb function « identically vanishes, let us show that N is 2-isotropic
or 2-principal. In order to do this, from the condition of Hopf, we can differentiate
S& = a€ and use the equation of Codazzi (3.1) in section 3, then we get the formula

Ya= (§a)n(Y) —29(§, AN)g(Y, AS) +29(Y, AN)g(&, AS).

From this, if we put @ = 0, together with the fact g(¢, AN) = 0 in section 3, we
know ¢(Y, AN)g(&, A¢) =0 for any YeT, M, ze M. This gives that the vector AN
is normal, that is, AN = g(AN,N)N or g(A¢, &) = 0, which implies respectively
the unit normal NV is 2-principal or %A-isotropic. This completes the proof of our
Lemma. O

By virtue of this Lemma, we distinguish between two classes of real hypersur-
faces in the complex hyperbolic quadric Q™ with invariant normal Jacobi operator
: those that have 2-principal unit normal, and those that have 2l-isotropic unit
normal vector field V. We treat the respective cases in sections 5 and 6.

5. Invariant Normal Jacobi Operator with 2-principal Normal

In this section let us consider a real hypersurface M in the complex hyperbolic
quadric Q™ with A-principal unit normal vector field. Then the unit normal vector
field N satisfies AN = N for a complex conjugation A€2l. This also implies that
A& = —¢£ for the Reeb vector field £ = —JN.

Then the normal Jacobi operator Ry in section 4 becomes

(5.1) Ry(X) = =X = 3n(X)§ — AX +n(X)§ = —X — 2(X)¢ — AX,
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where we have used that AN = N and

g(AX, §)AE = g(AX,JN)AJN = g(X,AJN)AJN
g(X,JAN)JAN = g(X,JN)JN
n(X)E.

On the other hand, we can put

AY = BY + p(Y)N,

where BY denotes the tangential component of AY and p(Y) = g(AY,N) =
g(Y,AN) = ¢g(Y,N) = 0. So it becomes always AY = BY for any vector field
Y on M in Q™. Then by differentiating (5.1) along any direction X, we have

(5.2) (VxRN)Y = Vx(Ryn(Y)) — Ry(VxY)
=—2(Vxn)(Y) = 2n(Y)Vx§ — (Vx B)Y.

Now let us consider that the normal Jacobi operator Ry is invariant, that is,
Lx Ry = 0. This is given by

0= (LxRN)Y
= Lx(RNY) — Ry(£xY)
= [X,RyY] — Ry[X,Y]
= Vx(RnY) = Vi, X — Rn(VxY — VyX)
= Vx(RnY) = Vi, X + By (Vy X).

Then it follows that

—29(¢SX,Y)E — 2n(Y)pSX — (VxB)Y = {Vy X +2n(Vy X)é + AVy X}
—{Vy X +29(Y)VeX + Vay X}

From this putting ¥ = £ and using A¢ = —¢, it follows that
(5.3) —205X — (VxB){ = 2n(VeX)E+ AV X + Ve X

= — 205X — {¢(X)JAE — (X, AE) + n(SX)N}.
where we have used the following

(VxA)§ = Vx(AE) — AV ¢

= Vx(A§) — AVx¢

- {(@XA)g + Aﬁxg} — A¢SX

— g(X)JAE + AGSX — o(X, AE) + g(SX, E)AN — AgSX
q(X)JAE — o(X, AE) + an(X)N.
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Then by taking the inner product of (5.3) with the unit normal N, we have
q(X) = 2an(X).
This implies ¢(§) = 2a, and the 1-form ¢ is given by

(5-4) ¢(X) = q(En(X).

On the other hand, in section 4 from the Lie invariance of the normal Jacobi
operator we have calculated the following

(5.5) Vive)X — Ry (VeX)
= (VxRy)§ = 395X

—{¢(X)g(JAN,N) — g(ASX,N) — g(AN, SX)} A¢

— 9(AN, N){q(X)JAE + g(SX,§)AN}

+{a(X)g(JAE, N) + g(SX,§)g(AN, N)} AN

— g(A&, SX)AN + g(q(X)JAE, €) A¢

+ 9(AE, 95X + 0(X, §)) AS

+ g(AE EH{a(X)JAL + ApSX + g(SX,{)AN}.
From this, by taking the inner product with the unit normal N, we have

(5.6)  —g(AE SX)g(AN,N) + g(A&, §){q(X)g(JAE, N)
+9(AE O{g(JAE, N) + g(ApSX, N) + g(SX,€)g(AN, N)} = 0.

Then by putting X = £ and using the assumption of Hopf, we have

(5.7) q(§)g(AE,€)* = 0.

From this, together with (5.4) and A¢ = —¢, it follows that the 1-form ¢ vanishes
identically on M.

On the other hand, we know that the complex hyperbolic quadric Q™" can
be immersed into the indefinite complex hyperbolic space CH" ™" in CJ"™2 (see
Montiel and Romero [12], and Kobayashi and Nomizu [11]). Then the same 1-form
q appears in the Weingarten formula

Vxz=—A:X +q(X)Jz

for unit normal vector fields {z, Jz} on the complex hyperbolic quadric Q™" which
can be immersed in indefinite complex hyperbolic space C’Hlm'H as a space-like
complex hypersurface, where V denotes the Riemannian connection on C’H{”’“‘+1
induced from the Euclidean connection on C3**? (see Smyth [19] and [20]). But the
1-form ¢ never vanishes on Q™*. This gives a contradiction (see Smyth [19]). This
means that there do not exist any real hypersurfaces in the complex hyperbolic
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quadric Q™" with invariant normal Jacobi operator, that is, Lx Ry = 0 for the
2A-principal unit normal vector field V.

6. Invariant Normal Jacobi Operator with 2l-isotropic Normal

In this section let us assume that the unit normal vector field N is -isotropic.
Then the normal vector field N can be put

1

V2

for Zy, Z2€V (A), where V(A) denotes a (+1)-eigenspace of the complex conjugation
Ae. Then it follows that

1 1 1
AN = —(Zy — JZy),AJN = ——(JZ1 + Z5),and JN = —(JZ, — Z>).
\/5(1 2) \/i( 1 2) 11 \/5( 1 2)

From this, together with (2.2) and the anti-commuting AJ = —JA, it follows that

N <Z1 + JZQ)

g(&§, AE) = g(JN,AJN) =0, g({, AN) =0 and g(AN,N) = 0.

By virtue of these formulas for the 2A-isotropic unit normal, the normal Jacobi
operator Ry in section 4 is given by

Ry(Y) ==Y = 3n(Y)¢ + g(AY, N)AN + g(AY,§) A€
Then the derivative of the normal Jacobi operator Ry on M is given as follows:

(6.1) (VxRN)Y
==3(Vxn)(Y)§ = 3n(Y)Vx{+g(Vx(AN),Y)AN
+ g(AN,Y)Vx(AN) + g(Y, Vx (AS)) A + g(AL, Y)V x (AS).

On the other hand, the Lie invariance (4.1) gives that

(6.2) (VxRN)Y = Vx(Rn(Y)) — Rn(VxY)
- VRN(Y)X - RN(VyX)

Then by putting Y = ¢ in (6.1) and (6.2), and using Ry (£) = 4€, we have

(6.3) —3¢pSX — g(AN,pSX)AN — g(¢pSX, AL) A¢
=—4V X + {VgX + 37’](V5X)f
—9g(AVeX,N)AN — g(AV X, §) AL}

From this, taking the inner product (6.3) with the vector field AN, it follows that

49(¢SX, AN) = 4g(Ve X, AN).
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Then from this, together with (6.3), we get
(6.4) PSX =VeX —n(VeX)E.

For any Xc&t, where ¢+ denotes the orthogonal complement of the Reeb vector
field ¢ in the tangent space T, M, z€M, we know that V¢X is orthogonal to the
Reeb vector field &, that is, n(VeX) = —g(Ve&, X) = 0. Then the formula (6.4)
becomes for any tangent vector field X €&+

(6.5) PSX = VeX.

When we consider the 2l-isotropic unit normal, the vector fields A and AN
belong to the distribution € — Q in section 3.

On the other hand, by virtue of Lemma 3.1, we prove the following for a Hopf
hypersurface in Q™" with Rd-isotropic unit normal vector field as follows:

Lemma 6.1.  Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Q™*, m>3, with A-isotropic unit normal vector field. Then

(6.6) SAN =0, and SAE=0.

Proof. Let us denote by € — Q = Span[A¢, AN]. Since N is isotropic, g(AN, N) =
0 and g(Ag&, &) = 0. By differentiating g(AN, N) = 0, and using (VxA)Y =
q(X)JAY in the introduction and the equation of Weingarten, we know that

0= g(?X(AN),N)—kg(AN,?XN)
=g(q¢(X)JAN — ASX,N) — g(AN,SX)
= —29(ASX,N).

Then SAN = 0. Moreover, by differentiating g(A¢, N) = 0, and using g(AN, N) =
0 and g(A¢, &) = 0, we have the following formula

0=g(Vx(AE),N) + g(A,, VxN)
= g9(q(X)JAE + A(#SX + g(SX,)N), N) — g(SAE, X)
= —2g(SAE X)

for any X€T .M, ze M, where in the third equality we have used pAN = JAN =
—AJN = AE. Then it follows that

SAE = 0.

It completes the proof of our assertion. O
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