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Abstract. We propose a mathematical model with Holling type II functional response,

to study the dynamics of vaccination. In order to make our model more realistic, we have

incorporated the recruitment of infected individuals as a continuous process. We have as-

sumed that vaccination cannot be perfect and there is always a possibility of re-infection.

We have obtained the existence of a disease free and endemic equilibrium point, when the

recruitment of infective is not considered and also obtained the existence of at least one

endemic equilibrium point when recruitment of infective is considered. We have proved

that if Rv < 1, disease free equilibrium is locally asymptotically stable, which leads to the

elimination of the disease from the population. The persistence of the model has also been

established. Numerical simulations have been done to establish the results obtained.

1. Introduction

Mathematical modelling is increasingly used to study the behaviour of diseases.
It studies the factors that play major role in the development of diseases; factors like
transmission and recovery rate [16]. Modelling helps in understanding the dynamics
of spreading of disease [2]. Many realistic models have been developed to study the
transmission dynamics of infectious diseases [6]. In these models, the population is
divided into classes based on various conditions and these classes are represented
by ordinary differential equations [14]. The main focus in the study of an epidemic
model is to analyse the steady states and their stability [3, 12].
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Many infectious diseases can be prevented by vaccination [10]. Disease can
reoccur in some individuals due to short term immunity against re-infection. Hence,
it is important to include the effects of immunity into realistic mathematical models
[11]. The immunity period varies from disease to disease. Some diseases provide life
long immunity while others provide short lived susceptibility. In measles, vaccines
provides less immunity than natural immunity. The Hepatitis B vaccine gives 10–15
years of immunity and after that a booster is required for immunity to be effective.
Also, influenza has a very short lived immunity [18]. Vaccination is a strategy to
control infectious diseases and so it should also be included in order to make a
model more realistic.

In the modeling of infectious diseases, the rate of infection plays a crucial role.
Factors like density of population and life style affects the rate directly or indirectly.
The rate can determine the spread or fall of an epidemic [17]. Bilinear incidence
rates [9] and standard incidence rates βSI

N are frequently used in epidemic models.
These rates are derived from the law of mass action. This contact law is applica-
ble to communicable diseases such as influenza, but not for sexually transmitted
diseases. It is noted that standard incidence rates may be a good approximation
if the population is large and the probability of contact is modest. After studying
the spread of the cholera epidemic in the Italian town of Bari in 1973, Capasso and
Serio [13] introduced a saturated incidence rate g(I)S into epidemic models [15],
where g(I) tends to a fixed saturation level when I gets large, i.e., g(I) = βI

1+αI
where βI measures the infection force of the disease and 1/(1 + αI) measures the
inhibition effect from the behavioral change of the susceptible individuals when their
number increases, or from the crowding effect of the infective individuals [1, 4, 5].
This incidence rate seems more reasonable than the bilinear incidence rate βIS
because it includes the behavioral change and crowding effect of the infective in-
dividuals and prevents the unboundedness of the contact rate by choosing suitable
parameters. It is more appropriate to consider a saturated incidence rate g(I)S for
the study of sexually transmitting disease. Hepatitis B is an illness caused by the
hepatitis B virus (HBV) and transmitted via contact with infectious bodily fluids.
It can be spread sexually, through the sharing of drug needles, in birth from an
infected mother, through contact with open sores or wounds of an infected person,
and through sharing of razors or toothbrushes with an infected person. Symptoms
of hepatitis B infection include fever, abdominal pain, and jaundice, among others.
Human papillomaviruses (HPV) belong to a large family of viruses, only some of
which are sexually transmitted. Most people who contract HPV have no symptoms,
and they quickly clear the virus from their bodies. However, in other people certain
types of HPV cause genital warts. Other HPV types are the main cause of cervical
cancer, and some are associated with anal, penile, mouth, and throat cancers.

Based on above factors, we have proposed a SVEIR model (Susceptible, Vac-
cinated, Exposed, Infected, Recovered), in Section 2. In order to make our model
more realistic we have assumed that the recruitment of infected individuals is a
continuous process, and that re-infection is possible. In Section 3, we obtain the
existence of disease free and endemic equilibrium points. In this section we also find
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the reproduction numbers and prove the local stability of a disease free equilibrium.
In Section 4, we prove the persistence of the model, and in the final section we give
the results of a numerical simulation.

2. Development of the Model

In this section, we present our mathematical model. Total population is di-
vided into five parts: susceptible, vaccinated, infected, exposed and recovered i.e.,
N(t) = S(t) + V (t) + E(t) + I(t) + R(t), at time t. The population increases at
a constant rate π in the absence of disease and can be described by the following
population model:

(2.1)
dS

dt
= π

The model is developed with the following assumptions:

1. The susceptible population will increase by the loss of vaccine induced immu-
nity and the recruitment of individual through previous vaccination. It will
decrease from infection, vaccination and death rate. Susceptible population
will get infected through contact of population with infected and exposed
population i.e., βIS. Hence, the equation is:

(2.2)
dS

dt
= (1− ε)π − βIS

1 + hI
− βηES

1 + hE
− ξS − µS + ωV

2. The vaccination of the susceptible population will increase the population
of vaccinated individuals. The vaccination is assumed to be imperfect, so
vaccinated individuals can acquire immunity to infection at a reduced rate
(1 − σ) βIS

1+hI . The vaccinated population is decreased by the infection and
natural death rate µ. The vaccine is effective only if σ = 1 and ineffective if
σ = 0. Thus, the equation of the vaccinated population is as follows:

(2.3)
dV

dt
= ξS − (1− σ)βIV

1 + hI
− (1− σ)βηEV

1 + hE
− (µ+ ω)V

3. The population of exposed will increase with increase of the infected and
exposed population. It decreases as the disease spreads and natural death
rate increases. Thus, the equation is:

(2.4)
dE

dt
=

βIS

1 + hI
+

ηβES

1 + hE
+

(1− σ)βIV

1 + hI
+

(1− σ)βηEV

1 + hE
− κE − µE

4. The infected population increases with recruitment of infected individuals
and due to rise of infection in exposed individuals. It decreases as the natural
death and rate of recovery increases. The infected population is given as:

(2.5)
dI

dt
= επ + κE − (γ + µ)I
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5. The population of recovered individual decreases with increase of natural
death and it increases as infected individuals recover:

(2.6)
dR

dt
= γI − µR

The biological meaning of the parameters in the above model is as follows:

Parameters Meaning
π Recruitment of Individuals
ξ Rate of vaccination in susceptible individual
σ Vaccine efficacy
µ death rate
β Probability of infection on contact with infected individual
κ Transfer rate of exposed into infected
η Modification parameter
γ Rate of recovery
ω Loss of immunity due to vaccine
ε Recruitment of infected individual

Now, we shall prove some basic dynamical properties of the model:

Theorem 2.1. The system is positively invariant and uniformly bounded in X with
the following property:

X =

(
(S, V,E, I,R) : S, V,E, I,R > 0;S + V + E + I +R ≤ π

µ

)

Proof. Adding all the above equations (2.2-2.6), we get,

(2.7)
dN

dt
= π − µN

From equation (2.7) the feasible region is:

X =

(
(S, V,E, I,R) : S, V,E, I,R > 0;S + v + E + I +R ≤ π

µ

)
and it can be easily seen that X is positively invariant. 2

In the following section, we will be studying the dynamics of two models: the
first model is when there is no recruitment of infected individuals in the population
i.e., ε = 0, and the second model is when recruitment of infected individual in the
population is considered, i.e., ε 6= 0.
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3. Stability Analysis

In this section, we will obtain the existence of disease free and endemic equi-
librium points. We will calculate the reproduction number with the help of next
generation method [7] and discuss the local stability of disease free equilibrium point
based on reproduction number.

3.1. Equilibrium Points at (ε = 0)

The mathematical model for this case is as follows:

dS

dt
= π − βIS

1 + hI
− βηES

1 + hE
− ξS − µS + ωV(3.1)

dV

dt
= ξS − (1− σ)βIV

1 + hI
− (1− σ)βηEV

1 + hE
− (µ+ ω)V(3.2)

dE

dt
=

βIS

1 + hI
+

ηβES

1 + hE
+

(1− σ)βIV

1 + hI
+

(1− σ)βηEV

1 + hE
− κE − µE(3.3)

dI

dt
= κE − (γ + µ)I(3.4)

dR

dt
= γI − µR(3.5)

Equilibrium point for the above model can be obtained by solving the following
equations:

π − βIS

1 + hI
− βηES

1 + hE
− ξS − µS + ωV = 0(3.6)

ξS − (1− σ)βIV

1 + hI
− (1− σ)βηEV

1 + hE
− (µ+ ω)V = 0(3.7)

βIS

1 + hI
+

ηβES

1 + hE
+

(1− σ)βIV

1 + hI
+

(1− σ)βηEV

1 + hE
− κE − µE = 0(3.8)

κE − (γ + µ)I = 0(3.9)

γI − µR = 0(3.10)

The disease free equilibrium (DFE) point can be obtained by taking E = I = R = 0
in the above equations and then using equations (3.6-3.7). We get the following
value of V :

(3.11) V =
πξ

µ(µ+ ξ + ω)
,

and the following value of S:

(3.12) S =
π(µ+ ω)

µ(µ+ ξ + ω)
.

Thus the DFE is

(
π(µ+ ω)

µ(µ+ ξ + ω)
,

πξ

µ(µ+ ξ + ω)
, 0, 0, 0

)
.
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3.2. Reproduction Number

Let x = (S, V,E, I)t. The system can be written as:

(3.13)
dx

dt
= F (x)− V (x),

where

F =

[
βS + (1− σ)βV ηβS + (1− σ)βηV

0 0

]
V =

[
0 (κ+ µ)

(γ + µ) −κ

]
V −1 =

1

(κ+ µ)(γ + µ)

[
κ (κ+ µ)

(γ + µ) 0

]
FV −1 is the next generation matrix for the model and the spectral radius of matrix
FV −1 is the reproduction number for the system. Thus,

Rv = FV −1 = β(S + (1− σ)V )(
κ

(κ+ µ)(γ + µ)
+

η

(κ+ µ)
).

Now, we will study the local stability of the DEF point based on the reproduc-
tion number.

3.3. Local Stability

We will show that the disease free equilibrium is locally asymptotically stable
if Rv < 1 and unstable if Rv > 1. The characteristic equation corresponding to
disease free equilibrium is given by |J − λI| = 0. Thus,

|J−λI| =


π − (ξ + µ+ λ) ω −βηS −βS

ξ −(µ+ ω)− λ −(1− σ)βηV −(1− σ)βV
0 0 βηS + (1− σ)βηV − (κ+ µ)− λ βS + (1− σ)βV
0 0 κ −(γ + µ)− λ


Therefore, the characteristic equation of disease free equilibrium point is given by

the product of the following two quadratic equations.

λ2 − λ((π − µ)− (ξ + µ+ ω))− (π(µ+ ω)− µ(ξ + µ+ ω)) = 0(3.14)

λ2 − λ(βηS + (1− σ)βηV − (κ+ µ)− (γ + µ))(3.15)

− ((βηS + (1− σ)βηV − (κ+ µ))(γ + µ) + βκS + (1− σ)βκV ) = 0

It can be easily seen that if Rv < 1 then the roots of (3.14) are negative. The other
two roots of the characteristic equation are given by roots of equation (3.15). In



Vaccination Model with Holling Type Functional Response 325

order to check the sign of roots of (3.15), we evaluate the sum and product of roots
of (3.15). Indeed, the sum of the roots is:

(3.16) ηRv(
(κ+ µ)(γ + µ)

κ+ η(γ + µ)
− ((κ+ µ) + (γ + µ))

and the product of the roots is:

(3.17) (κ+ µ)(γ + µ)(1−Rv).

The roots of equation (3.15) are negative as their sum is negative and their product
is positive if Rv < 1. Thus, we have the following theorem.

Theorem 3.3.1. Disease free equilibrium is locally asymptotically stable if Rv < 1
and locally asymptotically unstable if Rv > 1.

3.4 Endemic Equilibrium Point

Case 1: Endemic Equilibrium point when ε = 0

From equation (3.8) we get:

(3.18) I =
λκRv

β(κ+ η(γ + µ))

From equation (3.7) we obtain:

E =
λ(γ + µ)Rv

β(κ+ η(γ + µ))
(3.19)

λ =

(
I

1 + hI
+

ηE

1 + hE

)
(3.20)

λ = β

(
I(1 + hE) + ηE(1 + hI)

(1 + hI)(1 + hE)

)
(3.21)

Solving the above equation, we get,

(3.22) λh2IE − hβ(IE + ηIE) + λ(hE + hI)− β(I + ηE) + λ = 0

Above equation can also be written as:

(3.23) Xλ2 + Y λ+ Z = 0

where,

X = h2κ(γ + µ)Rv(3.24)

Y = hβRv((κ+ γ + µ)(κ+ η(γ + µ))− κ(γ + µ)(1 + η)Rv)(3.25)

Z = β2(κ+ η(γ + µ))2(1−Rv)(3.26)
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If Rv > 1 then X > 0 and Z < 0. By Descrate’s rule of signs, we can clearly see
that there is precisely one endemic equilibrium when Rv > 1. On the other hand if
Rv < 1 then X > 0, Z > 0. Consider,

((κ+ γ + µ)(κ+ η(γ + µ))− κ(γ + µ)(1 + η)Rv)
> ((κ+ γ + µ)(κ+ η(γ + µ))− κ(γ + µ)(1 + η))
> κ2 + (γ + µ)2 > 0

Thus, Y > 0. Hence, endemic equilibrium does not exist if Rv < 1 and thus, we
have the following theorem.

Theorem 3.4.1. Unique endemic equilibrium exists if Rv > 1.

Case 2: Endemic Equilibrium Point when ε 6= 0

Now, we consider the case ε 6= 0 i.e, recruitment of infected individuals is allowed
at the rate ε.

I =

(
λκRv

β(κ+ η(γ + µ))
+

επ

(γ + µ)

)
(3.27)

E =
λ(γ + µ)Rv

β(κ+ η(γ + µ))
(3.28)

λ = β

(
I

(1 + hI)
+

ηE

(1 + hE)

)
(3.29)

Solving this equation, we get,

(3.30) λ(1 + hI)(1 + hE) = β (I(1 + hI) + ηE(1 + hI))

(3.31) λh2IE − βhIE(1 + η)− β(I + ηE) + hλ(I + E) + λ = 0

Now substituting value of I and E from equation (3.27) and (3.28) to equation
(3.30), we get:

(3.32) Pλ3 +Qλ2 +Rλ+ S = 0

where,

(3.33) P = h2κ(γ + µ)R2
v

(3.34) Q = βhRv(επh(κ+η(γ+µ))+(κ+γ+µ)(κ+η(γ+µ))−κ(γ+µ)(1+η)Rv)

(3.35) R = β2(κ+ η(γ + µ))((
hεπ

(γ + µ)
+ 1−Rv)(κ+ η(γ + µ)) + hεπ(1 + η))
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(3.36) S = −επβ
3(κ+ η(γ + µ))2

(γ + µ)

We have P > 0 and S < 0. Clearly, we see that at least one endemic equilibrium
always exists. Thus we have the following theorem.

Theorem 3.4.2. For ε 6= 0 endemic equilibrium always exists.

4. Persistence

Let Y be a locally compact metric space with metric d and let F be a closed
subset of Y with boundary ∂F and interior in F . Let π be a semi dynamical system
defined on F . We say that π is persistent if for all u ∈ intF , lim inf

t→∞
d(π(u, t)∂F ) > 0,

and that π is uniformly persistent if there is ε > 0 such that for all u ∈ intF ,
lim inf
t→∞

d(π(u, t), ∂F ) > ε. A result about persistence is given by Fonda [8] in terms

of repellers. A subset Θ of F is said to be a uniform repeller if there is there exists
an ε > 0 such that for each u ∈ F

Θ , lim inf
t→∞

d(π(u, t), A) > ε. A semi flow on a closed

subset F of a locally compact metric space is uniformly persistent if the boundary
of F is repelling. The result of Fonda is given below:

Lemma 4.1. Let Θ be a compact subset of Y such that Y
Θ is positively invariant. A

necessary and sufficient condition for Θ to be a uniform repeller is that there exists
a neighbourhood U of Θ and a continuous function P : Y → R+ satisfying:

(1) P (u) = 0 if and only if u ∈ Θ.

(2) For all u ∈ U
Θ there is a Tu such that P (π(u, Tu)) > P (u).

For any u0 = (S(0), V (0), E(0), I(0)) ∈ Ω, there is a unique solution π(u0, t) =
(S, V.E, I)(t;u0) of which is defined in R+ and satisfies π(u0, 0) = (S(0), V (0),
E(0), I(0)). Since Ω is a positively invariant set of the system, we have that π(u0, t)
is in Ω for t ∈ R+ and is a semi-dynamical system in Ω.

Theorem 4.1. The set Θ is uniform repeller and π is uniformly persistent in Ω if
Rv > 1.

Proof. We see that Θ is positively invariant as I(t) > 0 for t > 0 if I(0) > 0. The
set Θ is also a compact subset of Ω. Let P : Ω→ R+ be defined as, P (S, V,E, I) =
I and U = {(S, V,E, I) ∈ Ω : P (S, V,E, I) < ξ} for t > 0. From the first two
equations of the system, we have,

(4.1)
dS(t)

dt
≥ A− (φ+ µ)S

(4.2)
dV (t)

dt
≥ φS − µV
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then lim inf
t→∞

S(t, ũ) ≥ A
φ+µ , lim inf

t→∞
V (tũ) ≥ φA

µ(µ+φ) − ε for t > T , where ε > 0 is a

sufficiently small constant. Define the auxiliary function:

(4.3) L(t) =
κ(1− ξ)
κ+ µ

E(t) + I(t)

where ξ(0 < ξ < 1) is a sufficiently small constant and since Rv > 1,therefore,

(4.4)
aκ(1− ξ)
(κ+ µ)

(
β

(
(

A

φ+ µ
− ε

)
+ β(1− σ)

(
(

φA

µ(φ+ µ)
− ε

))
− (d− r+ δ) > 0

The derivative of L(t) along π(u, t) is as follows:

dL

dt
=
aκ(1 − ξ)

(κ+ µ)

(
β(I + ηE)

(
A

φ+ µ
− ε

)
(4.5)

+β(I + ηE)(1 − σ)

(
φA

µ(φ+ µ)
− ε

)
+ κE − (d− r + δ)I

)
dL

dt
≥ aκ(1 − ξ)

(κ+ µ)

(
aβ(I + ηE)

(
A

φ+ µ
− ε

)
(4.6)

+aβ(I + ηE)(1 − σ)

(
φA

µ(φ+ µ)
− ε

))
+ κξE − (d− r + δ)

≥ aκ(1 − ξ)

(κ+ µ)

(
aβ

(
A

φ+ µ
− ε

)
+ aβ(1 − σ)

(
φA

µ(φ+ µ)
− ε

)
− (d− r + δ)

)
I(t)(4.7)

+
aκ(1 − ξ)

(κ+ µ)

(
aβη

(
A

φ+ µ
− ε

)
+ aβη(1 − σ)

(
φA

µ(φ+ µ)
− ε

)
+ κξ

)
E(t)(4.8)

Let

(4.9) τ = min

{(
aβη(

A

φ+ µ
− ε) + aβη(1− σ)(

φA

µ(φ+ µ)
− ε) +

aκ(1− ξ)
(κ+ µ)

κξ

)
,

(4.10)
κ(1− ξ)
(κ+ µ)

(
aβ(

A

φ+ µ
− ε) + aβ(1− σ)(

φA

µ(φ+ µ)
− ε)− (d− r + δ)

)}
then,

(4.11)
dL

dt
≥ τL(t)

From equation (4.11) we can see that L(t)→∞ as t→∞. But, L(t) is bounded
on the set Ω, so the assumption above is not true. Thus, we have proved that for
each u ∈ Ω, with u belonging to suitably small neighbourhood of Θ, there is some
Tu such that P (π(u, Tu)) > P (u).

Therefore by the lemma, we conclude the theorem. 2
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5. Numerical Analysis

We have done numerical simulations and obtained the following results:

1. For parameters ε = 0, ω = 0.01, β = 0.04, η = 0.03, ξ = 0.01, σ =
0.06, κ = 0.02, h = 0.04, µ = 0.2, π = 5, γ = 0.9, the equilibrium point is
S = 13.2386, V = 0.2092, E = 10.2344, I = 4.7326. Thus, trajectories are
approaching to endemic equilibrium point (Figure 5).

2. For parameters ε = 0, ω = 0.01, β = 0.004, η = 0.03, ξ = 0.01, σ = 0.06, κ =
0.0002, h = 0.04, µ = 0.2, π = 0.0001, γ = 2, the equilibrium point is
S = 0.0003, V = 0.0002, E = 0.0000, I = 0.0000. Here, we can see that
Rv = 0.00000131065 < 1 and trajectories are approaching to disease free
equilibrium point (Figure 6).

3. For parameters ε = 0.95, ω = 0.01, β = 0.05, η = 0.03, ξ = 0.01, σ = 0.6, κ =
0.02, h = 0.04, µ = 0.2, π = 5, γ = 0.1 infected will always be greater than
susceptible. The values are S = 0.3589, V = 0.0085, E = 0.8017, I = 15.8868
(Figure 1). For the same set of parameters and ξ = 0.8, σ = 0.9, we get,
S = 0.1718, V = 0.5266, E = 0.4955, I = 15.8664 (see Figure 2), thus, we see
that if the recruitment rate of the infected population is large, then infected
will always be greater than susceptible and disease cannot be controlled even
by increasing vaccination parameter to a large extent.

4. For parameters ε = 0.1, ω = 0.01, β = 0.04, η = 0.03, ξ = 0.01, σ =
0.06, κ = 0.02, h = 0.04, µ = 0.2, π = 5, γ = 0.9, the estimated values are
S = 19.4772, V = 0.6585, E = 1.9406, I = 0.4899 (Figure 3). For the same
parameters and ξ = 0.8, σ = 0.9, we get, S = 4.5853, V = 17.1482, E =
0.5301, I = 0.4643 (Figure 4). Hence, the susceptible population will always
be greater than infective, i.e., if the recruitment rate of the infected popula-
tion is small, then the disease can be controlled and it can be further reduced
by increasing the vaccination parameter.
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Figure 1: ε = 0.95, ω = 0.01, β = 0.05, η = 0.03, ξ = 0.01, σ = 0.6, κ =
0.02, h = 0.04, µ = 0.2, π = 5, γ = 0.1

Figure 2: ε = 0.95, ω = 0.01, β = 0.05, η = 0.03, ξ = 0.8, σ = 0.9, κ =
0.02, h = 0.04, µ = 0.2, π = 5, γ = 0.1
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Figure 3: ε = 0.1, ω = 0.01, β = 0.04, η = 0.03, ξ = 0.01, σ = 0.06, κ =
0.02, h = 0.04, µ = 0.2, π = 5, γ = 0.9

Figure 4: ε = 0.1, ω = 0.01, β = 0.04, η = 0.03, ξ = 0.8, σ = 0.9, κ =
0.02, h = 0.04, µ = 0.2, π = 5, γ = 0.9
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Figure 5: ε = 0, ω = 0.01, β = 0.04, η = 0.03, ξ = 0.01, σ = 0.06, κ =
0.02, h = 0.04, µ = 0.2, π = 5, γ = 0.9

Figure 6: ε = 0, ω = 0.01, β = 0.004, η = 0.03, ξ = 0.01, σ = 0.06, κ =
0.0002, h = 0.04, µ = 0.2, π = 0.0001, γ = 2
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6. Conclusion

In this paper, we have studied an SVEIR model, and we have discussed the
dynamics of the system. Two cases have been studied, one when the recruitment of
infected is not considered i.e., ε = 0 and another case when recruitment of infected
is considered i.e., ε 6= 0. For ε = 0, we have obtained the existence of a disease
free equilibrium point and endemic equilibrium point. Also, we have proved that
disease free equilibrium point is locally stable for Rv < 1. Further, we have proved
that if Rv > 1, unique endemic equilibrium point exists. For ε 6= 0, we obtained
the existence of at least one endemic equilibrium point. Uniform persistence of the
system has been studied. We have further verified our results obtained with the help
of numerical simulations for both the cases. It has been proved that recruitment
rate of infective plays an important role in shaping the dynamics of the model, for
higher value of recruitment rate of infective, disease can not be controlled even by
increasing the vaccination parameter to a large extent whereas if the recruitment
rate of infective is low then disease can be controlled and it can be further reduced
by increasing the vaccination parameter.
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