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ABSTRACT. In this paper, we will find a Seifert matrix for a class of pretzel links with a
certain symmetry. Using the symmetry, we find formulae for the Alexander polynomials,
determinants and signatures of the pretzel links.

1. Introduction

A pretzel link P(p1,p2,p3, -+ ,pn) is defined by an n-tuple (p1,p2,ps, -+ ,pn),
n > 3, such that each p; is nonzero integer. The absolute value of p; is the number of
half twists and the sign of p; is either positive or negative as seen in Fig. 1. Pretzel
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Figure 1:

links are a well-known family of links in knot theory, and they have been studied
extensively. J. Ge and L. Zhang [5] used graph theory to study the determinants of
pretzel links and Y. Shinohara [9] used the Goreitx matrix to study their signatures.
In [8], Y. Nakagawa studied the Alexander polynomials of pretzel links where at
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least two p;s are even, while D. Kim and J. Lee [7] studied the Conway polynomials
of pretzel links. Even though the Alexander polynomial of a link can be obtained
from its Conway polynomial, the practical calculation of the Alexander polynomial
of a link is very difficult.

Suppose that P(p1,p2,ps, - ,pn) is oriented so that the induced orientation of
the tangle p; is either parallel or opposite, as seen in Fig. 2.
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Figure 2:

In this paper, we will use Seifert matrices to find a formula for the Alexander
polynomials of pretzel links P(p1,p2,ps, - ,pn) all of whose tangles have opposite
orientation. We will also use Seifert matrices to calculate the determinant and the

signature of P(p1,p2,p3,- - ,Pn)-

2. Preliminaries

The authors have previously developed techniques for the calculation of the
Alexander polynomial. See [1, 2, 3, 4] for details.

A Seifert surface for an oriented link L in S2 is a connected compact oriented
surface contained in S which has L as its boundary. The following Seifert algorithm
is one way to get a Seifert surface from a diagram D of L.

Let D be a diagram of an oriented link L. In a small neighborhood of each
crossing, make the following local change to the diagram,;

Delete the crossing and reconnect the loose ends in the only way com-
patible with the orientation.

When this has been done at every crossing, the diagram becomes a set of disjoint
simple loops in the plane. It is a diagram with no crossings. These loops are called
Seifert circles. By attaching a disc to each Seifert circle and by connecting a half-
twisted band at the place of each crossing of D according to the crossing sign, we
get a Seifert surface F for L.

The Seifert graph T’ of F is constructed as follows.

Associate a vertex with each Seifert circle and connect two vertices
with an edge if their Seifert circles are connected by a twisted band.
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Note that the Seifert graph I' is planar, and that if D is connected, so is T
Since I' is a deformation retract of a Seifert surface F', their homology groups are
isomorphic: Hy(F) = Hy(T"). Let T be a spanning tree for I'. For each edge
e € E(T')\ E(T), the graph T U {e} contains the unique simple closed circuit T
which represents an 1-cycle in Hy(F). The set {T. | e € E(I') \ E(T)} of these
1-cycles is a homology basis for F'. For such a circuit T, let T." denote the circuit
in S obtained by lifting slightly along the positive normal direction of F. For
E[)\ E(T) = {e1, - ,en}, the linking number between T, and T} is defined by

lk(Tel,T"r) ; Z sign(c).

crossing c€T,; ﬂT:;.
A Seifert matriz of L associated to F' is the n x n matrix M = (m;;) defined by
mij = lk(Tei,ng),

where E(I') \ E(T) = {e1, - ,en}. A Seifert matrix of L depends on the Seifert
surface F' and the choice of generators of Hi(F).

Let M be any Seifert matrix for an oriented link L. The Alexander polynomial
ApL(t) € Z[t,t71], the determinant det(L) and the signature o(L) of L are defined
by

Ap(t) =det(tzM —t~ 2 MT)
det(L) = | det(M + MT)|
o(L)=a(M+MT).

See [4, 6] for further details.

For e, f € E(I')\E(T), the intersection T, N T is either the empty set, a single
vertex, or a simple path in the spanning tree 7. If T, N T} is a simple path, and
vo and vy are two ends of T, N Ty, we may assume that the neighborhood of v
looks like Fig. 3. In other words, the cyclic order of edges incident to vy is given by
T, N Ty, Te, Ty with respect to the positive normal direction of the Seifert surface.
Also we may assume that the directions of T, and T are given so that vg is the
starting point of T, N Ty. For, if the direction is reversed, one can change the
direction to adapt to our setting so that the resulting linking number changes its
sign. In [1], the authors showed the following proposition which is the key tool to
calculate the linking numbers for Seifert matrix of a link.

Proposition 2.1.([1]) Fore, f € E(T)\E(T), let p and q denote the numbers of
edges in T, NTy corresponding to positive crossings and negative crossings, respec-
tively. Suppose that the local shape of T, N T in F looks like Fig. 3. Then,

o (p q), if p+ q is even;
lk(Tean )= { p—q+1), if p+q isodd, and

2(
L . .
L ,(p ) if p+ q is even;
lk(Tijn—{ §<p_q_1> if p+ q is odd.
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positive direction

Figure 3:

Let P(p1,p2,ps3, - ,pn) denote the pretzel link whose all tangles have opposite
orientation. Then the Seifert surface of P(p1,p2,ps3, - ,Pn) is drawn in Fig. 4. In
this case of orientation, we will see that the Seifert matrix has very nice symmetry,
in which Viete’s formula (from algebra) can be applied.

Figure 4:

From now on, we suppose that the Seifert surface of P(p1,p2,p3, - ,pn) is
depicted as in Fig. 4. In order for a Seifert surface of P(p1,p2,p3, - ,Pn) to be
drawn as Fig. 4, the orientations of p; for all 7, 1 < ¢ < n must be opposite.
To do this, the p;s must be either all odd or all even. Because if there exist i €
{1,2,--- ,n — 1} such that p; is odd and p;y; is even, then the Seifert circles of
P(p1,p2,ps,- -+ ,pn) are depicted as in Fig. 5.

To calculate the Alexander polynomial of a pretzel link P(p1,p2,ps, - ,0n), We
introduce that Viete’s formula:

Proposition 2.2.([Vitte’s formula]) Let f(z) = 2" 1+ Cp_22" 2 +-- -+ C12 + C
be a polynomial of degree n — 1 and let x1,x2, -+ ,xn_1 be To0Ols of the equation
f(x) =0. Then the relation between coefficients of f(x) and its roots are related to
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Figure 5:

symmetric polynomial expression:

k
H(iﬂl,m%“' ;xnfl) =TT T+ Ty kg Tp—ft1  Tp—1 = (—1) Cn—1—k.
k

The Alexander polynomial Ap(t) of a pretzel link P(p1,p2,ps, - ,pn) can be
expressed as f(z) = 2" "1 +C,,_o2" 2+ - -4+C12+Cy where we think of Appy ps) (1),
Ap(pyps)(t), -5 Ap(py p,)(t) as roots and think of App,—p1, -+ 7ﬂpl)(t) as x.

—_————
k
Notice that the signs of the coefficents are always positive, e.g., Ap3 _55)(t) =
Ape,—3,-3)(t) + {Ap,—5(t) + Aps5)(t)}Aps,—5)(t) + Aps,—5)(t) Aps,s)(t).

3. Seifert Matrices of Pretzel Links and Related Invariants

Lemma 3.1. Let P = P(p1,p2,--+ ,pn) be a pretzel link. Suppose that the Seifert
surface of the pretzel link P looks like Fig. 4. Then there exist a Seifert matriz M
of the pretzel link P such that if p1 is odd, then a Seifert matrix M of the pretzel
link P is given by

pir+p2 p—1 p—1 -+ p1—1

) m+l pr+p3s pp—1 -+ p1—1
M:5 m+l pi+1 pr+ps -+ pr—1
p+1 pi+1 pi+1 -+ pi+pn

(n—1)x (n—1),

and if p1 is even, then a Seifert matrix M of the pretzel link P is given by

p1+ P2 p1 D1 e p1
1 D1 p1+Dp3 D1 e D1
il p1 p1 p1+ps - P1
2 . . . . .

b1 P p1 s PLtDPa (n=1)x(n—1).

243
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Proof. If we choose the oriented simple closed curves fi, fa,:--, fn_1 shown in
Fig. 4 as the basis of Hi(F,Z) where F' is the Seifert surface of the pretzel link
P(p1,p2,ps, -+ ,0n), then by using Proposition 2.1 one can calculate the linking

numbers to get the result. The proof is completed. O
Theorem 3.2. Let P = P(p1,—p1, -+ ,—p1) be a pretzel link. Suppose that the
—_———
n—1

Seifert surface of the pretzel link P looks like Fig. 4. Then the determinant det(P)
and the signature o(P) of the pretzel link P are given by

det(P) = (n —2)|p1|" 1,

_ —n 4+ 3, ifp1>0,'
U(P)_{n—?), if p1 < 0.

Proof. From Lemma 3.2, we know that

0O pr ;1 m
0 p1oo g1

M+MT=| P 1 0O -+ m
proproproc 00 e,

Hence det(M + M7T) = (=1)"(n — 2)p}? ! by the formula (1) in Appendix A. Since
n—2>0, det(P) = (n — 2)|p1|"~!. The characteristic equation of M + M7” to be

_)\ P1 P1 oo p1
P1 - p1 e P
det((M +MT)y—X)=det | P1 P1 1
p1 P11 P o —A (ne1)x(n-1)

=(=A=p)" pr(n =) + (A =p1)} =0

by the formula (3) in Appendix A. Thus the eigenvalues of M + MT are \; =
pi(n—2)and Ag = A3 = --- = \,_1 = —p1. If py is positive, then —p; is negative
and p;(n — 2) is positive since n > 3. Hence the signature of M + M7 is 3 — n.
Similarly, if p; is negative, then the signature of M + M7 is n — 3. The proof is
completed. O

Theorem 3.3. Let P = P(p1,—p1,---,—p1) be a pretzel link. Suppose that the
—_——

n—1

Seifert surface of the pretzel link P looks like Fig. 4. Then the Alexander polynomials
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Ap(t) of P are given by

(_l)nilAP(mﬁmﬁpl)(t) .
tzPizl _y—gpitlyn=2_ opitl -
N B L 1y - ey

1

§plfl)n72
2 . . dd'

(t% p1—1 ,t—%m*—l) _ (tépﬁ-l ,t—%m—l) , P is odd;
2 2 2

2
n— 1 CLlopin
(=171 = 2)Ap(py,—py,—py) () (2 — 72 B2,

if p1 is even.
Proof. Suppose that p; is odd. From Lemma 3.1, we know that tzM —t" 2 MT =

0 t%lh*l _t—%p1+1 t%pl*l _t—%jﬂﬂrl
2 2 2
1 1 —1lp—1
t2p1+ —t 3 P1 0
2 2

1 1
ipi—1 _ 4—1pi+1
12 =5 1725,

1 1
1pi+1 -1 pi—1
t272 t—2 3

t% P12+1 _ t*% p12—1
By the formula (1) in Appendix A,

, 1
det(t3 M — =5 M7y = (—1)"—2 (3 2L~

1 _apr+1l o ap+1 0 apr—1
t2 —t 2 t2 t
2 2 )( 2 2 )
{(t%,ﬂl;l _ t—%pl;l)n—Q _ (t%P12+1 _ t—%m;l)n—Z}
(t% p1;1 _ t*%l’lg’l) _ (ﬁm;l —t %m;l)
= (*1)n71AP(p1,—P17—P1)(t)
y {(tépg—l _ t*%;ﬂl;‘l)n72 _ (t%plg_l _ tfép12—1)n72}
(tém—l 7t—%p1;-1) (t%pﬁ-l =3 p12—1)
since
0 t% p1—1 _t*%pl"rl
AP(Ph—:Dh—Pl)(t) = det < t% pit+l t—%?l*l 2 0 2
2 2
ipp—1 g+l ., 1p;+1 _ipp—1
1)(t2 t— 2 t t

0 t3l =3
1 1
sP1 _ 4—5P1
2B D

$3PL _4—3PL 43P
2

2 (n—1)x(n—1)
By the formula (1) in Appendix A,
det(t3 M — 73 MT) = (1) (n—2)(t3 5L — 5 By
= (1) (0 = 2) Ay, (S — 4732
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since
0 tzBL ¢z lL
_ 2 2
AP(Pla—Pla—Pl)(t) = det ( t%% _t,%% 0 )
1P1 —1P1y2
= (=1)(tz— —t~ 2 —
(-1 - il
The proof is completed. O

Corollary 3.4. Let P = P(p1,pa2,p3, - ,Pn) be a pretzel link (n > 3). If the
Seifert surface of pretzel link P is shown in Fig 4, then the determinant det(P) of
P is given by

det(P) =

P2p3"'pn{p1(”2)+pl+1})-
Pn D2

Proof. From the definition of a link and Lemma 3.1, we can prove it by using the
formula (3) in Appendix A. The proof is completed. O

To prove the main theorem, we show the following lemma.
Lemma 3.5. Suppose that the Seifert surface of the pretzel link P looks like Fig. /.
(1) Apgpy)(t) =Ao(t) = 1.
(2) Appy,—p)(t) = Aoo(t) = 0.
(3) Army,—pr,—pi) () = APy, —pr,—py) (), for any k=1,2,--- /n.

(4) AP(pumw' 7Pn)(t) = AP(m,pi)(t)AP(pl,pzw7p¢_1,pi+1,~-~,pn)(t)
+ AP(PLP%'“ Di—1,—PisPit1, ,pn)(t)'

Proof. (1) and (2) are trivial.
(3) Suppose that p; is odd. Then a Seifert matrix My, of P(p1, —p1,—px) and a

0 p1—1
Seifert matrix Mg of P(p1,—p1,—p1) are given by My = pm+1 p -%-pk
2 2
0 p1—1
and Mgr = mt1 2 if p; is odd. For p; is even, it is similar for p; is
2

odd.
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(4) The basic idea of determining the determinant of matrix is as

a1
a21

det a;—11
[£251

Ai411

(¢27% )

= Qj; det

a12
a22

a;—12

@422

Apn2

ail @12
azi a22

a;—12
;422

a;—11
@ir11

an1 an2

a11 a12

+ det

a;—11
a1 a2
411

a21 a22

;—12

@422

Gnl an2

The proof is completed.

a1i—-1 @14
a2;—1 a2;

Qi—1i—1  QAi—1
Qii—1 Qi
Qi+1i-1  Qi41q
Ani—1 Ani

a1;—1
a2;—1

Aj—1i—1
Aj415—1

Api—1

a1i—1 a4
a2;—1 a2

Aj—15—1
Qji—1 0
Aj417—1

Api—1 Qpg

Aj—15

Aj+14

a1i41
a2i41

Qi —1i+4+1

Q541

@j4-1341

Ani+1

A1i4+1
241

Aj—1i41
Q4141

Ani+1

A1i41
a2i+1

Aj—144+1
Aji4-1
Ai41i4+1

Qi+l

The following is the main theorem of the paper.

Theorem 3.6. Let P = P(p1,p2,p3, -

of P is given by

k=1

Proof. We divide our proof into two cases (Case 1) All of p; are odd, and (Case 2)

All of p; are even.

k—1

A1n
a2n

Ai—1n
Ai—1n
Qit1n

ann

A1n
a2n

Gj—1n
Ajt1n

ann

A1n
a2n

Aj—1n
Aj—1n
Ait1n

ann

-, pn) be a pretzel link (n > 3). If the Seifert
surface of the pretzel link P is shown in Fig. 4, then the Alexander polynomial Ap(t)

Z AP(Plv_ply tee —P1)(t) X H (AP(PlaP2)(t)7 AP(pl,ps)(t)7 T ’AP(m,pn)(t))
ﬁ_/ n—k

247
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(Case 1) All of p; are odd. By the definition of the Alexander polynomial of a link
and by Lemma 3.1, we have the Alexander polynomial of P is given by

(t% 7t7%)P1+P2 pzpiml g pitl izl oy %P12+1
13 P12 1_ t—%m;l (t% _ t—%)m;rps t%m;l _ t—%P12+1
det
1 1 1 1 1 1
ipi+1l -1 pi—1 ipt+l 4 —ipi—1 i i —I\pitpn
1z 55 17255 tz 55 17255 (t2 t 2)72

We proceed by the mathematical induction on n(n > 3). For n = 3,

t2(p1+p2) —t 3 (pr4ps)  ti(pi—1)—t 3 (pi+1)

Ap(p; pops) (t) = det 2 2
(prp2:pa) t2(pi+1) —t 3(p— 1) t3(pi+ps) —t 2 (p1 +ps)
2 2
(2 (e p2) — tE (py 4 p2) t3 (p1+ps) =t~ % (p1 + ps)
= det det
2 2
1 _1 1 _1
t2(p1+p2) —t 2(pr+p2) t2pai—1)—t"2(p1+1)
+ det 2 2 )
(1) — 2 (p — 1) 0
2

by Lemma 3.5(4)
= AP(m,m)(t)AP(m,ps)(t) + AP(pupz,—m)(t)
= AP(I)Lm)(t)AP(PLps)(t) + AP(mﬁmﬁm)(t) by Lemma 3.5(3).

= AP(Pth)(t)AP(Pl,Ps)(t) + {AP(PLM)(t) + AP(Pl;Ps)(t)}AP(Plﬁpl)(t)
+ Ap(py,—p1,—p1) (t), by Lemma 3.5(2).

Assume that the formula is true for n — 1.

AP(m,pQ’--- ’pn)(t) = AP(pl,Pn)(t)AP(pl,p2,--~ ’pnq)(t) + AP(]Dl,pz,- ,pnflgfpl)(t)
= AP(m,pn)(t)AP(pl,pz,~~ 7pn71)(t) + AP(plvpn—l)(t)

AP(PLP%" "Pn—2,—P1) (t)AP(Pl»pm“- 7pn—2ﬁp1ﬁp1)( )
by Lemma 3.5(4).

By applying the identity Lemma 3.5(4) to the last polynomial Apg,, ...,
pu_s.—p1,—p1) (1) Tepeatedly, we get the following result.

AP(p17p27"' ,Pn) (t)

- Z AP(phm)(t)AP(phmw- Pi—1,—P1,y " 7*p1)(t) + AP(pl,*Pla o 7*1?1)( )
i=2 %,—/

n—i n—1



On Alexander Polynomials of Pretzel Links 249

n—1

= Z AP(m,pi)(t) Z{AP(ph—pl’ HR —Pl)(t)

k=1
k—1

x H (AP(Pl,m)(t)’ e 7AP(p17pi—l)(t)7 AP(plﬁpl)(tL U ’AP(plﬁm)(t))}

n—1—k

+ AP(plv_pla R _pl)(t)
~—_———
n—1
n—1 n
= Z{AP(pl,—ph o —pp (@) ZAP(?’hPi)(t)
k=1 _— =2
k—1

X H (AP(phpz)(t)v T ’AP(pl,mfl)(t)’ AP(pl,—pl)(t)v T aAP(pl,—pl)(t))}
n—1—k

+ AP(Plv_ph B _pl)(t)
—_———
n—1
n—1
= Z{AP(pl,—pl, ceey —pl)(t) X H (AP(PI’PZ)(t)a e 7AP(p1,p,,L)(t))}
k=1 ‘—k_/l—’ n—k
+ AP(pl,—pl, T _pl)(t)
—_———
n—1
= Z{AP(pl,—pl, B —pl)(t) H (AP(Pth)(t)? AP(pl,ps)(t)v T 7AP(;D17;Dn)(t))}‘
k=1 — n—k
k—1

(Case 2) All of p; are even, is similar to the proof of (Case 1). The proof is
completed. O

Example 3.7 Let P(3,—5,5) be a pretzel link. Then a Seifert matrix of P(3, —5,5)
is given by M = ( b

2 4
—6t? + 13t — 6.
And by using the main theorem, one can get the same result.

) . By direct calculation, one can see that Ap(s _55)(t) =

Ap,—55 () = Apa,—5) (1) Apas)(t) + Api,—3) (O{ArE,—5 (1) + Apa,s ()}
+ Ap(s,—3,—3)(t)

(t:rl)f ((371)t;(3+1)> ((3+1)t;(371))

" {((3—1)t2—(3+1)) 3 <(3+1)t2— (3 - 1))}

= —6t> + 13t — 6.

=(—t+1)4t—4)+
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Appendix A

The following formulae for the determinants of matrices are the key tools for
the calculation of the determinant, the signature and the Alexander polynomial of
pretzel links. We leave a proof in Appendix A. It may be proven somewhere in the
linear algebra because is can be proved using mathematical induction.

(1) For an integer n(n > 2),

0O a a -+ a a
b 0 a - a a ( l)nfl b( n—1 bnfl)
b b 0 --- a a — ab(a — .

det | . . . . . = a—b , ifa#b
O (=) 1(n —1)a", ifa=0.
b b b --- 0 a
b b b --- b 0

nxn

Proof. We can prove inductively the lemma by the following recurrence formula.
Let

0 a a -+ a a
b 0 a --- a a
b b 0 --- a a
f(n) =det .
b b b --- 0 a
b b b --- b 0

nxn,

Add the (—1)(the 2nd column) to the 1st column and then, add the (—1)(the
2nd row) to the 1st row. Hence

—a—b a 0 0 0

b 0 a -+ a a

0 b 0 -+ a a

f(n) = det . .
0 b b 0 a
0 b b b 0
nxn.
0 a a a b a a a
b 0 a a 0 0 a a
fn+2)=(-a—=>b)det [ : .t 1 | —adet]| :

b b 0 a 0 b 0 a
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o
Q
Q
Q

b 0 a a 0 @ a

=(—a—b)det | : : . : | —abdet :
Do Do 5 0w
b b -+ 0 a b b 0
b b - b 0

=(—a—0b)- f(n+1)—ab- f(n).

Suppose that a # b. Then f(n +2) — (a +b)f(n + 1) —abf(n) = 0. Since
f(2) = —ab, f(3) = ab(a+b) and 22 + (a + b)x + ab = 0 has two roots —a and —b,

_ a _ nfla anfl_ n—1
e

If a = b, then f(n+2)—(2a)- f(n+1) —a?f(n) = 0. Since f(2) = —a?, f(3) = 2a3
and 22 + (2a)x + a® = 0 has multiple root —a,

ax b b b b

b ax b b b

b b as b b n bn a1 b
det N : . . _{H(ai_b)}(an—b+a1—b_an—b)

b b b - an-1 b

b b b - b an

Proof. We can prove the following recurrence formula. Add the (—1)(the first
column) to the kth column for any &k =2,3--- ,n. Then,

al b b b b al b—(ll b—a1 b—a1
b a b - b b b ax—b 0 0
b b a3z - b b b 0 az—b - 0
det . . . ) . . = det . . .

b b b -+ an-1 b b 0 0 0
b b b - b an b 0 0 <o ap—b

a1 b—a1 b—a1 b—a1 b—a1

b ax—0 0 0 0

b 0 as —b 0 0

Let f(n) = det .
b 0 0 an,l—b 0
b 0 0 0 an —b

nxn,
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a1 b—a1 b—a1 b—a1
b ax—0 0 0
f(n) = (an —b)det [ : - : :
b 0 coo Qp_2—b 0
b 0 0 Gp-1—0b
b—a1 b—a1 b—a1 b—a1
az —b 0 0 0
+ (=1)" b det : : ; :
0 0 0 0
0 0 cee Gpet 0
= (an - b)f(n - 1) + b(al - b)(a2 - b) e (anfl - b)
f(n) fln=1) b
Then = + A
(al—b)(ag—b)---((an)—b) (a1 —b)(ag —b)---(an—1—b) ap—0b
f(n :
et 9(n) (ay —b)(az —b) -+ (an, — b) en g(n) = g(n )+ an —b Since
) m _bn ay B
g(l)_(h*b_lh*b’g(n)_an—b—’—alfb anib.Hencef(n)—(al
bn ai b
b)(as —b) -+ (an — b - . O
(@ ) (e )(an—b+a1—b an—b>
(3) If all a; are the same, then we have the following result. For an integer n(n > 2),
a b b -+ b D
b a b -+ b b
et b b a --- b b f (a=b)"Hon+ (a—b)}, ifa#b;
€ . . . . - O, ifa:b,.
b b b a b
b b b b a
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