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Abstract. In this article, we study the solvability of the Cauchy-Dirichlet problem for

a class of nonlinear parabolic equations with nonstandard growth and nonlocal terms.

We prove the existence of weak solutions of the considered problem under more general

conditions. In addition, we investigate the behavior of the solution when the problem is

homogeneous.

1. Introduction

This paper deals with the existence and behavior of the solution of a nonlin-
ear parabolic Dirichlet-type boundary value problem whose model example is the
following:

(1.1)

 ∂u
∂t −

n∑
i=1

Di

(
|u|p0−2

Diu
)

+ a (x, t, u) + g (x, t) ‖u‖sLp(Ω) (t) = h (x, t) ,

u (x, 0) = 0 = u0 (x) , u |ΓT = 0

where (x, t) ∈ QT := Ω × (0, T ) , T > 0, ΓT := ∂Ω × [0, T ] , Ω ⊂ Rn (n ≥ 3) is a
bounded domain with sufficiently smooth boundary (at least Lipschitz), Di ≡ ∂/∂xi
and p0 ≥ 2, p, s ≥ 1 and a : Ω× (0, T )×R→ R, a (x, t, τ) is a function with variable

nonlinearity in τ, (for example, a (x, t, τ) = a0 (x, t) |τ |α(x,t)−1
+ a1 (x, t)) and g is a

real valued measurable function which is not zero on the cylinder QT .
Recently, nonlinear parabolic equations with nonlocal terms have been well
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studied ([2, 4, 8, 9, 10, 11, 12, 13, 16]). Here, “nonlocal term” denotes a functional
depending on the unknown function. There are numerous nonlocal mathematical
models studied by many authors to express processes in physics and engineering.
For example, Galaktionov and Levine [18] presented a general approach to critical
Fujita exponents for nonlinear parabolic problems with nonlocal nonlinearities. Pao
[24] considered a nonlocal model obtained from combustion theory. The degenerate
parabolic equations with a nonlocal term which appear in a population dynamics
model that communicates through chemical means, were studied in [4, 12, 17].

The equation in (1.1) is nonlinear with respect to the solution, and for the case
p0 = 2, this equation is a nonlocal reaction-diffusion equation which describes an
ignition model for a compressible reactive gas (see, [4, 7]). In this case the existence,
uniqueness and blow-up of nonnegative solutions to problem (1.1) have been studied
in [23, 27, 34, 35]. Models similar to (1.1) also arise in biology to describe the density
of some biological species. In such models the nonlocal term and the absorption
term cooperate and communicate during the diffusion.

Boundary-value problems of type (1.1) are a case of the Newtonian filtration
equation which can be given in the following general form:

ut = ∆ϕ (u) + f.

Equation (1.1) is a parabolic equation with implicit degeneracy which is similar to
the equation of Newtonian polytropic filtration [15, 19, 21, 22] i.e.

ut = ∆
(
|u|m−1

u
)

+ f,

where m > 1. This equation is parabolic for u different from 0 and degenerates when
u = 0. Under the condition m > 1, the above equation describes the non-stationary
flow of a compressible Newtonian fluid in a porous medium under polytropic con-
ditions.

Over the past decade, there has been an increasing interest in the study of
degenerate parabolic equations that involve variable exponents [3, 5, 6]. In this pa-
per, we investigate the parabolic equation with such an additional term f , together
with variable nonlinearity and nonlocal terms. If we rearrange the main part of the
equation, we arrive at

ut = ∆
(
|u|p0−2

u
)

+ F
(
x, t, u, ‖u‖Lp(Ω) , h

)
.

To the best of our knowledge, there have not been any studies on the exis-
tence of solutions for the parabolic equations of type (1.1) providing a function
F whose argument depends on nonlinear nonlocal term ‖u‖sLp(Ω) (t) and a sepa-

rate |u| with variable nonlinearity. We stress that the nonlinearity of nonlocal term
g (x, t) ‖u‖sLp(Ω) (t) is independent from the local nonlinearity. This causes some dif-

ficulties in studying the uniqueness and behavior of the solution of problem (1.1).
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We apply the general solvability theorem of [31], i.e. Theorem 2.6, to prove the
existence of weak solution of (1.1). We study problem (1.1) on the domain of the op-
erator generated by the addressed problem and verify the existence of a sufficiently
smooth solution of the problem under more general (weak) conditions. Investigat-
ing a boundary-value problem on its own space yields better results. Therefore in
this work, we analyse the considered problem on its own space. Apart from linear
boundary value problems, the sets generated by nonlinear problems are subsets of
linear spaces which do not have linear structure (see [28, 29, 30, 31, 32, 33] and
references therein).

This paper is organized as follows. In the next section, we recall some useful
results on the generalized Orlicz-Lebesgue spaces and results on nonlinear spaces
(pn-spaces). In Section 3, we present the assumptions, define the weak solution,
and then prove the existence of weak solution to problem (1.1). In Section 4, we
examine the behavior of the solution of (1.1) when the problem is homogeneous.

2. Preliminaries

In this section, we begin with some available facts from the theory of the gen-
eralized Lebesgue spaces which are also called Orlicz-Lebesgue spaces. We present
these facts without proof; proofs can be found in [1, 14, 20, 25].

Let Ω be a Lebesgue measurable subset of Rn such that |Ω| > 0. (Throughout
the paper, we denote by |Ω| the Lebesgue measure of Ω). Let p (x, t) ≥ 1 be a
measurable bounded function defined on the cylinder QT = Ω× (0, T ) i.e.

(2.1) 1 ≤ p− ≡ ess
QT

inf |p (x, t)| ≤ ess
QT

sup |p (x, t)| ≡ p+ <∞.

On the set of all functions on QT define the functional σp and ‖.‖p by

σp (u) ≡
∫
QT

|u|p(x,t) dxdt

and
‖u‖Lp(x,t)(QT ) ≡ inf

{
λ > 0| σp

(u
λ

)
≤ 1
}
.

The Generalized Lebesgue space is defined as follows:

Lp(x,t) (QT ) := {u : u is a measurable real-valued function in QT , σp (u) <∞} .

The space Lp(x,t) (QT ) becomes a Banach space under the norm ‖.‖Lp(x,t)(QT )

which is so-called Luxemburg norm.
We present the following results for these spaces (see [20, 25, 26]):

Lemma 2.1. If 0 < |Ω| <∞, and p1 and p2 fulfill (2.1), then

Lp1(x,t) (QT ) ⊂ Lp2(x,t) (QT ) ⇐⇒ p2 (x, t) ≤ p1 (x, t) for a.e (x, t) ∈ QT .
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Lemma 2.2. The dual space of Lp(x,t) (QT ) is Lp
∗(x,t) (QT ) if and only if p ∈

L∞ (QT ). The space Lp(x,t) (QT ) is reflexive if and only if

1 < p− ≤ p+ <∞

here p∗ (x, t) ≡ p(x,t)
p(x,t)−1 .

For u ∈ Lp(x,t) (QT ) and v ∈ Lq(x,t) (QT ) where p, q satisfy (2.1) and 1
p(x,t) +

1
q(x,t) = 1, the following inequalities hold:∫

QT

|uv| dxdt ≤ 2 ‖u‖Lp(x,t)(QT ) ‖v‖Lq(x,t)(QT )

and for all u ∈ Lp(x,t) (Ω) , we have

min{‖u‖p
−

Lp(x,t)(QT )
, ‖u‖p

+

Lp(x,t)(QT )
} ≤ σp (u) ≤ max{‖u‖p

−

Lp(x,t)(QT )
, ‖u‖p

+

Lp(x,t)(QT )
}.

We introduce certain nonlinear function spaces (pn-spaces) which are complete
metric spaces and directly connected to the problem under consideration. We also
give some embedding results for these spaces [33, 32, 30, 31] (see also references
cited therein).

Definition 2.3. Let α ≥ 0, β ≥ 1, % = (%1,...,%n) be multi-index, m ∈ Z+ and
Ω ⊂ Rn (n ≥ 1) be bounded domain with sufficiently smooth boundary.

Sm,α,β (Ω) ≡

u ∈ L1 (Ω) | [u]α+β
Sm,α,β(Ω) ≡

∑
0≤|%|≤m

∫
Ω

|u|α |D%u|β dx

 <∞


in particular,

S̊1,α,β (Ω) ≡

u ∈ L1 (Ω) | [u]α+β

S̊1,α,β(Ω)
≡

n∑
i=1

∫
Ω

|u|α |Diu|β dx

 <∞

 ∩ {u |∂Ω≡ 0}

and for p ≥ 1,

Lp
(

0, T ; S̊1,α,β (Ω)
)
≡

u ∈ L1 (QT ) | [u]p
Lp(0,T ;S̊1,α,β(Ω))

≡
T∫

0

[u]p
S̊1,α,β(Ω)

dt <∞

 .

These spaces are called pn-spaces.*

*S1,α,β (Ω) is a complete metric space with the following metric: ∀u, v ∈ S1,α,β (Ω)

dS1,α,β (u, v) =
∥∥∥|u|αβ u− |v|

α
β v
∥∥∥
W1,β(Ω)
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Theorem 2.4. Let α ≥ 0, β ≥ 1 then ϕ : R −→ R, ϕ (t) ≡ |t|
α
β t is a homeomor-

phism between S1,α,β (Ω) and W 1,β (Ω).

Theorem 2.5. The following embeddings hold:

(i) Let α, α1 ≥ 0 and β1 ≥ 1, β ≥ β1,
α1

β1
≥ α

β , α1 + β1 ≤ α+ β then we have

S̊1,α,β (Ω) ⊆ S̊1,α1,β1 (Ω) .

(ii) Let α ≥ 0, β ≥ 1, n > β and n(α+β)
n−β ≥ r then there is a continuous embedding

S̊1,α,β (Ω) ⊂ Lr (Ω) .

Furthermore for n(α+β)
n−β > r the embedding is compact.

(iii) If α ≥ 0, β ≥ 1 and p ≥ α+ β then

W 1,p
0 (Ω) ⊂ S̊1,α,β(Ω)

holds.

In the following, we present the general solvability theorem of [31], whose proof
relies on Galerkin approximation (see also for similar theorems [33, 30]). We will
employ this theorem to demonstrate the existence of a weak solution of problem
(1.1).

Theorem 2.6. Let X and Y be Banach spaces with dual spaces X∗ and Y ∗ re-
spectively, Y be a reflexive Banach space, M0 ⊆ X be a weakly complete “reflexive”
pn-space, X0 ⊆ M0 ∩ Y be a separable vector topological space. Let the following
conditions be fulfilled:

(i) f : S0 −→ Lq (0, T ;Y ) is a weakly compact (weakly continuous) mapping,
where

S0 := Lp (0, T ; M0) ∩W 1,q (0, T ;Y ) ∩ {x (t) : x (0) = 0}

1 < max {q, q′} ≤ p <∞, q′ = q
q−1 ;

(ii) there is a linear continuous operator A : W s,m (0, T ;X0) −→W s,m (0, T ;Y ∗) ,
s ≥ 0, m ≥ 1 such that A commutes with ∂

∂t and the conjugate operator A∗

has ker(A∗) = 0;

(iii) operators f and A generate, in generalized sense, a coercive pair on space
Lp (0, T ;X0) , i.e. there exist a number r > 0 and a function Ψ : R1

+ −→ R1
+

such that Ψ (τ) /τ ↗ ∞ as τ ↗ ∞ and for any x ∈ Lp (0, T ;X0) such that
[x]Lp(M0) ≥ r following inequality holds:

T∫
0

〈f (t, x (t)) , Ax (t)〉 dt ≥ Ψ
(

[x]Lp(M0)

)
;
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(iv) there exists some constants C0 > 0, C1, C2 ≥ 0 and ν > 1 such that the
inequalities

T∫
0

〈ξ (t) , Aξ (t)〉 dt ≥ C0 ‖ξ‖νLq(0,T ;Y ) − C2,

t∫
0

〈
∂x

∂τ
,Ax (τ)

〉
dτ ≥ C1 ‖x‖νY (t)− C2, a.e. t ∈ [0, T ]

hold for any x ∈W 1,p (0, T ;X0) and ξ ∈ Lp (0, T ;X0) .

Assume that that conditions (i)-(iv) are fulfilled. Then the Cauchy problem

dx

dτ
+ f (t, x (t)) = y (t) , y ∈ Lq (0, T ;Y ) ; x (0) = 0

is solvable in S0 in the following sense

T∫
0

〈
dx

dτ
+ f (t, x (t)) , y∗ (t)

〉
dt =

T∫
0

〈y (t) , y∗ (t)〉 , ∀y∗ ∈ Lq
′
(0, T ;Y ∗) ,

for any y ∈ Lq (0, T ;Y ) satisfying the inequality

sup

 1

[x]Lp(0,T ;M0)

T∫
0

〈y (t) , Ax (t)〉 dt : x ∈ Lp (0, T ;X0)

 <∞.

3. Statement of the Problem and the Main Result

Let Ω ⊂ Rn (n ≥ 3) be a bounded domain with sufficiently smooth boundary
∂Ω. We study the problem ∂u

∂t
−

n∑
i=1

Di

(
|u|p0−2 Diu

)
+ a (x, t, u) + g (x, t) ‖u‖sLp(Ω) (t) = h (x, t) , (x, t) ∈ QT

u (x, 0) = 0 = u0 (x) , u |ΓT = 0

under the following conditions:

p0 ≥ 2, p, s ≥ 1, g : QT → R is a measurable function satisfying g(x, t) 6= 0 for a.e.
(x, t) ∈ QT and a : Ω × (0, T ) × R → R, a (x, t, τ) is a Carathédory function with
variable nonlinearity in τ (see inequality (3.1)).

Let the function a (x, t, τ) in problem (1.1) fulfill the following conditions:

(U1) There exists a measurable function α : Ω× (0, T ) −→ R, 1 < α− ≤ α (x, t) ≤
α+ <∞ such that a (x, t, τ) satisfies the inequalities

(3.1) |a (x, t, τ)| ≤ a0 (x, t) |τ |α(x,t)−1
+ a1 (x, t)
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and

(3.2) a (x, t, τ) τ ≥ a2 (x, t) |τ |α(x,t) − a3 (x, t) ,

a.e. (x, t, τ) ∈ QT × R.
Here ai, i = 0, 1, 2, 3 are nonnegative, measurable functions defined on QT and

a2 (x, t) ≥ A0 > 0 a.e. (x, t) ∈ QT .

We investigate problem (1.1) for the functions h ∈ Lq0
(
0, T ;W−1,q0 (Ω)

)
+

Lα
∗(x,t) (QT ) where α∗ is conjugate of α i.e. α∗ (x, t) := α(x,t)

α(x,t)−1 and the dual space

W−1,q0 (Ω) :=
(
W 1,p0

0 (Ω)
)∗
, q0 := p0

p0−1 .

Let us denote S0 by

S0 := Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
∩ Lα(x,t) (QT )

∩W 1,q0
(
0, T ;W−1,q0 (Ω)

)
∩ {u : u (x, 0) = 0}.

We understand the solution of the problem under consideration in the following
sense:

Definition 3.1. A function u ∈ S0, is called the generalized solution (weak solution)
of problem (1.1) if it satisfies the equality

T∫
0

∫
Ω

∂u

∂t
wdxdt+

n∑
i=1

T∫
0

∫
Ω

(
|u|p0−2

Diu
)
Diwdxdt

+

T∫
0

∫
Ω

a (x, t, u)wdxdt+

T∫
0

∫
Ω

g (x, t) ‖u‖sLp(Ω) wdxdt =

T∫
0

∫
Ω

hwdxdt

for all w ∈ Lp0
(

0, T ;W 1,p0
0 (Ω)

)
∩ Lα(x,t) (QT ) ∩W 1,q0

(
0, T ;W−1,q0 (Ω)

)
.

We are ready to proceed to the main theorem of this section but first define the
followings. For sufficiently small η ∈ (0, 1)

Q1,T := {(x, t) ∈ QT | α (x, t) ∈ [1, p0 − η)} ,

Q2,T :=
{

(x, t) ∈ QT | α (x, t) ∈ [p0 − η, α+]
}

and

β (x, t) :=

{
p0α
∗(x,t)

p0−α(x,t) if (x, t) ∈ Q1,T ,

∞ if (x, t) ∈ Q2,T .

Also, p̃0 := np0
n−q0 which is critical exponent in Theorem 2.5 and its conjugate is

p̃0
∗ = p̃0

p̃0−1 .
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Theorem 3.2.(Existence Theorem) Let (U1) be satisfied; 1 ≤ s < p0 − 1 and
p ≤ p0. If a0 ∈ Lβ(x,t) (QT ) , a1 ∈ Lα

∗(x,t) (QT ) , a2 ∈ L∞ (QT ) , a3 ∈ L1 (QT ) and

g ∈ L
p0

p0−(s+1)
(
0, T ;Lp̃0

∗
(Ω)
)

then for all h ∈ Lq0
(
0, T ;W−1,q0 (Ω)

)
+Lα

∗(x,t) (QT )
problem (1.1) has a generalized solution in the space S0 and ∂u/∂t belongs to
Lq0

(
0, T ;W−1,q0 (Ω)

)
.

The proof of Theorem 3.2 is based on the general existence theorem (Theorem
2.6). We introduce the following spaces and mappings in order to apply Theorem
2.6 to prove Theorem 3.2.

S0 := Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
∩ Lα(x,t) (QT )

∩W 1,q0
(
0, T ;W−1,q0 (Ω)

)
∩ {u : u (x, 0) = 0},

f : S0 −→ Lq0
(
0, T ;W−1,q0 (Ω)

)
+ Lα

∗(x,t) (QT ) ,

f (u) := −
n∑
i=1

Di

(
|u|p0−2 Diu

)
+ a (x, t, u) + g (x, t) ‖u‖sLp(Ω) (t) ,

A : Lp0
(
0, T ;W 1,p0

0 (Ω)
)
∩ Lα(x,t) (QT ) ⊂ S0 −→ Lp0

(
0, T ;W 1,p0

0 (Ω)
)
∩ Lα(x,t) (QT ) ,

A := Id.

We prove some lemmas to show that all conditions of Theorem 2.6 are fulfilled
under the conditions of Theorem 3.2.

Lemma 3.3. Under the conditions of Theorem 3.2, f and A generate a “coercive

pair” on Lp0
(

0, T ;W 1,p0
0 (Ω)

)
∩ Lα(x,t) (QT ).

Proof. Since A ≡ Id, being “coercive pair” equals to order coercivity of f on the

space Lp0
(

0, T ;W 1,p0
0 (Ω)

)
∩ Lα(x,t) (QT ).

For u ∈ Lp0
(

0, T ;W 1,p0
0 (Ω)

)
∩ Lα(x,t) (QT ), we have the following equation:

〈f (u) , u〉QT =

n∑
i=1

 T∫
0

∫
Ω

|u|p0−2 |Diu|2 dxdt


+

∫
QT

a (x, t, u)udxdt+

T∫
0

∫
Ω

g (x, t) ‖u‖sLp(Ω) udxdt.

By using (3.2), we obtain

〈f (u) , u〉QT ≥
n∑
i=1

 T∫
0

∫
Ω

|u|p0−2 |Diu|2 dxdt

+

∫
QT

|a2 (x, t)| |u|α(x,t)
dxdt

−
∫
QT

|a3 (x, t)| dxdt−
T∫

0

∫
Ω

|g (x, t)| ‖u‖sLp(Ω) |u| dxdt.(3.3)
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If we employ (U1) to estimate the second integral in (3.3) and by applying Hölder
inequality together with the embedding S̊1,(p0−2)q0,q0 (Ω) ⊂ Lp (Ω) (see Theorem
2.5) to estimate the fourth integral then we get,

〈f (u) , u〉QT ≥ [u]
p0
Lp0(0,T ;S̊1,(p0−2),2(Ω))

+A0

∫
QT

|u|
α(x,t)

dxdt

− C
T∫

0

[u]
s
S̊1,(p0−2)q0,q0

(Ω) ‖u‖Lp̃0 (Ω) ‖g‖Lp̃0∗ (Ω) dt(3.4)

− ‖a3‖L1(QT ) .

By taking account the embeddings (see Theorem 2.5)

S̊1,(p0−2),2 (Ω) ⊂ S̊1,(p0−2)q0,q0 (Ω)

and

S̊1,(p0−2)q0,q0 (Ω) ⊂ Lp̃0 (Ω)

into (3.4) to estimate the pseudo-norm and third integral respectively, we attain

〈f (u) , u〉QT ≥ C0 [u]
p0
Lp0(0,T ;S̊1,(p0−2)q0,q0

(Ω))
+A0

∫
QT

|u|
α(x,t)

dxdt

− C1

T∫
0

[u]
s+1

S̊1,(p0−2)q0,q0
(Ω)
‖g‖Lp̃0∗ (Ω) dt− ‖a3‖L1(QT ) .(3.5)

By utilizing Young’s inequality to the third integral in (3.5), we have

〈f (u) , u〉QT ≥ C2

(
[u]

p0
Lp0(0,T ;S̊1,(p0−2)q0,q0

(Ω))
+ ‖u‖α

−

Lα(x,t)(QT )

)
−K.

Here, K = K

(
‖a3‖L1(QT ) , ‖g‖

L
p0

p0−(s+1) (0,T ;Lp̃0
∗

(Ω))

)
, C2 = C2 (p0, s, A0, |Ω|) are

positive constants. So the proof is completed. 2

Lemma 3.4. Under the conditions of Theorem 3.2, f is bounded from S0 into
Lq0

(
0, T ;W−1,q0 (Ω)

)
+ Lα

∗(x,t) (QT ).

Proof. First, we define the mappings

f1 (u) :=

n∑
i=1

−Di

(
|u|p0−2

Diu
)

+ g (x, t) ‖u‖sLp(Ω) (t) ,

f2 (u) := a (x, t, u) .
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We need to show that these mappings are both bounded from

Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
∩Lα(x,t) (QT ) into Lq0

(
0, T ;W−1,q0 (Ω)

)
+Lα

∗(x,t) (QT ) .

Let us show that f1 is bounded: For u ∈ Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)

and v ∈

Lp0
(

0, T ;W 1,p0
0 (Ω)

)
,

∣∣∣〈f1 (u) , v〉QT
∣∣∣ ≤ n∑

i=1

 T∫
0

∫
Ω

|u|p0−2 |Diu| |Div| dxdt

+

T∫
0

∫
Ω

|g (x, t)| ‖u‖sLp(Ω) |v| dxdt.

Using the embedding S̊1,(p0−2)q0,q0 (Ω) ⊂ Lp (Ω) and Hölder’s inequality above we
find,

≤

 n∑
i=1

 T∫
0

∫
Ω

|u|(p0−2)q0 |Diu|q0 dxdt


1
q0
 n∑
i=1

 T∫
0

∫
Ω

|Div|p0 dxdt


1
p0

+ C̃

T∫
0

[u]sS̊1,(p0−2)q0,q0
(Ω) ‖g‖

L

np0
n(p0−1)+p0 (Ω)

‖v‖
W

1,p0
0 (Ω)

dt.

Estimating the second integral above by Hölder’s inequality (p0s > 1), we obtain∣∣∣〈f1 (u) , v〉QT
∣∣∣ ≤ Ψ([u]Lp0(0,T ;S̊1,(p0−2)q0,q0

(Ω))) ‖v‖
Lp0(0,T ;W

1,p0
0 (Ω))

where

Ψ([u]Lp0(0,T ;S̊1,(p0−2)q0,q0
(Ω))) = [u]

p0−1

Lp0(0,T ;S̊1,(p0−2)q0,q0
(Ω))

+ C̃1 [u]
s
Lp0(0,T ;S̊1,(p0−2)q0,q0

(Ω)) ‖g‖L
p0

p0−(s+1) (0,T ;Lp̃0
∗

(Ω))
.

By the last inequality, boundedness of f1 is achieved.
Similarly, from (3.1) and Theorem 2.5, for all u ∈ S0, we have the following

estimate

σα∗ (f2 (u)) = σα∗ (a (x, t, u))

=

T∫
0

∫
Ω

|a (x, t, u)|α
∗(x,t)

dxdt

≤ C3

(
σα (u) + [u]

p0
Lp0(0,T ;S̊1,(p0−2)q0,q0

(Ω))

)
+ C4,

here C3 = C3

(
α+, α−, ‖a0‖Lβ(x,t)(QT )

)
, C4 = C4 (σβ (a0) , σα∗ (a1) , |Ω|) > 0

are constants. That yields f2 : Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
∩ Lα(x,t) (QT ) →

Lα
∗(x,t) (QT ) is bounded. 2
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Lemma 3.5. Under the conditions of Theorem 3.2, f is weakly compact from S0

into Lq0
(
0, T ;W−1,q0 (Ω)

)
+ Lα

∗(x,t) (QT ).

Proof. First we verify the weak compactness of f0, where

f0 (u) := −
∑n
i=1Di

(
|u|p0−2

Diu
)

. Let {um (x, t)}∞m=1 ⊂ S0 be bounded and

um
S0⇀ u0. It is sufficient to show a subsequence of

{
umj

}∞
m=1

⊂ {um}∞m=1 which

satisfies f0

(
umj

) Lq0(0,T ;W−1,q0 (Ω))
⇀ f0 (u0) .

Since for a.e. t ∈ (0, T ) , um (·, t) ∈ S̊1,(p0−2)q0,q0 (Ω), and by existence of an
one-to-one correspondence between the classes (Theorem 2.4)

S̊1,(p0−2)q0,q0 (Ω)
ϕ←→
ϕ−1

W 1,q0
0 (Ω)

with the homeomorphism

ϕ (τ) ≡ |τ |p0−2
τ, ϕ−1 (τ) ≡ |τ |−

p0−2
p0−1 τ,

for all m ≥ 1 we have

|um|p0−2
um ∈ Lq0

(
0, T ;W 1,q0

0 (Ω)
)

is bounded. Due to the fact Lq0
(

0, T ;W 1,q0
0 (Ω)

)
is a reflexive space, there exists

a subsequence
{
umj

}∞
m=1

⊂ {um}∞m=1 such that

∣∣umj ∣∣p0−2
umj

Lq0(0,T ;W
1,q0
0 (Ω))

⇀ ξ.

Now, we show that ξ = |u0|p0−2
u0. According to compact embedding [33],

(3.6) Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
∩W 1,q0

(
0, T ;W−1,q0 (Ω)

)
↪→ Lp0 (QT )

∃
{
umjk

}∞
m=1

⊂
{
umj

}∞
m=1

, umjk
Lp0 (QT )→ u0

which implies

umjk
QT→
a.e

u0

by the continuity of ϕ (τ) , we get∣∣∣umjk ∣∣∣p0−2

umjk
QT→
a.e
|u0|p0−2

u0

that yields ξ = |u0|p0−2
u0.
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From this, we deduce that for each v ∈ Lp0
(

0, T ;W 1,p0
0 (Ω)

)
〈f0

(
umjk

)
, v〉QT =

n∑
i=1

〈−Di

(∣∣∣umjk ∣∣∣p0−2

Diumjk

)
, v〉QT

−→
mj↗∞

n∑
i=1

〈−Di

(
|u0|p0−2

Diu0

)
, v〉QT = 〈f0 (u0) , v〉QT

whence, the result is obtained.
We shall show the weak compactness of f2. Since

a : Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
∩ Lα(x,t) (QT )→ Lα

∗(x,t) (QT )

is bounded by Lemma 3.4, then for m ≥ 1, f2 (um) = {a (x, t, um)}∞m=1 ⊂
Lα
∗(x,t) (QT ) . Also Lα

∗(x,t) (QT ) (1 < (α∗)
−

< ∞) is a reflexive space thus
{um}∞m=1 has a subsequence

{
umj

}∞
m=1

such that

a
(
x, t, umj

) Lα
∗(x,t)(QT )
⇀ ψ.

We deduce from the compact embedding (3.6) that

∃
{
umjk

}∞
m=1

⊂
{
umj

}∞
m=1

, umjk
Lp0 (QT )→ u0

thus
umjk

QT→
a.e

u0.

Accordingly, the continuity of a (x, t, .) for almost (x, t) ∈ QT implies that

a(x, t, umjk )
QT→
a.e

a (x, t, u0) ,

so, we arrive at ψ = a (x, t, u0) i.e. f2(umjk )
Lq0(0,T ;W−1,q0 (Ω))+Lα

∗(x,t)(QT )
⇀ f2 (u0).

Let a1 (x, t, u) := g (x, t) ‖u‖Lp(Ω) (t) . Using the compact imbedding (3.6) and
p ≤ p0, we attain

g (x, t)
∥∥umj∥∥sLp(Ω)

(t)
Lq0(0,T ;W−1,q0 (Ω))

−→ g (x, t) ‖u0‖sLp(Ω) (t) .

Therefore, a1 is weakly compact from S0 into Lq0
(
0, T ;W−1,q0 (Ω)

)
+Lα

∗(x,t) (QT ) .

As a conclusion, f is weakly compact from S0 into Lq0
(
0, T ;W−1,q0 (Ω)

)
+

Lα
∗(x,t) (QT ) . 2
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Now, we give the proof of main theorem of this section.

Proof of Theorem 3.2. Since A = Id, obviously it is a linear bounded map and
satisfies the conditions (ii) of Theorem 2.6. Furthermore for any u ∈ W 1,p0

0 (QT )
the following inequalities are valid:

T∫
0

〈u, u〉Ω dt =

T∫
0

‖u‖2L2(Ω) dt ≥M ‖u‖
2
Lq0 (0,T ;W−1,q0 (Ω))

and
t∫

0

〈
∂u

∂τ
, u

〉
Ω

dτ =
1

2
‖u‖2L2(Ω) (t) ≥M 1

2
‖u‖2W−1,q0 (Ω) (t) ,

a.e. t ∈ [0, T ] (constant M > 0 comes from embedding inequality). Thus condition
(iv) of Theorem 2.6 is satisfied as well. Consequently from Lemma 3.3-Lemma
3.5, it follows that the mappings f and A fulfill all the conditions of Theorem 2.6.
Employing this theorem to problem (1.1), we find that (1.1) is solvable in S0 for
any h ∈ Lq0

(
0, T ;W−1,q0 (Ω)

)
+ Lα

∗(x,t) (QT ) satisfying the following inequality

sup

 1

[u]Lp0(0,T ;S̊1,(p0−2)q0,q0
(Ω)) + ‖u‖Lα(x,t)(QT )

T∫
0

〈h, u〉Ω dt : u ∈ Q0

 <∞

where Q0 := Lp0
(

0, T ;W 1,p0
0 (Ω)

)
∩ Lα(x,t) (QT ). Considering the norm definition

of h in Lq0
(
0, T ;W−1,q0 (Ω)

)
+Lα

∗(x,t) (QT ), we conclude that (1.1) is solvable in S0

for any h ∈ Lq0
(
0, T ;W−1,q0 (Ω)

)
+ Lα

∗(x,t) (QT ) . In order to complete the proof,
it remains to remark that (1.1) can be written in the form

∂u

∂t
= h (x, t)− F (x, t, u,Diu) ,

and under the conditions of Theorem 3.2, right hand belongs to Lq0
(
0, T ;W−1,q0 (Ω)

)
which implies ∂u/∂t ∈ Lq0

(
0, T ;W−1,q0 (Ω)

)
. 2

Remark 3.6. We note that if the function α (x, t) in (3.1) satisfies the inequality
α+ < p0 then the existence of a solution of the problem (1.1) can be shown under
more general (weaker) conditions. This is verified in the following theorem.

Theorem 3.7. Assume that (3.1) and inequalities 1 ≤ s < p0 − 1, p ≤ p0

are satisfied. If 1 < α− ≤ α (x, t) ≤ α+ < p0, (x, t) ∈ QT and g ∈
L

p0
p0−(s+1)

(
0, T ;Lp̃0

∗
(Ω)
)
, a0 ∈ Lβ1(x,t) (QT ), a1 ∈ Lα

∗(x,t) (QT ) where β1 (x, t) :=
p0α
∗(x,t)

p0−α(x,t) then ∀h ∈ Lq0
(
0, T ;W−1,q0 (Ω)

)
problem (1.1) has a generalized solution

in the space Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
∩W 1,q0

(
0, T ;W−1,q0 (Ω)

)
.
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Proof. We deduce from inequality (3.1) that

〈f (u) , u〉QT ≥
n∑
i=1

 T∫
0

∫
Ω

|u|p0−2 |Diu|2 dxdt

− ∫
QT

|a0 (x, t)| |u|α(x,t)
dxdt

−
∫
QT

|a1 (x, t)| dxdt−
T∫

0

∫
Ω

|g (x, t)| ‖u‖sLp(Ω) |u| dxdt.

For arbitrary ε > 0 estimating the second integral above by Young’s inequality and

using Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
⊂ Lp0 (QT ), we attain the following inequality

which gives the coercivity of f ,

〈f (u) , u〉QT ≥ C5 [u]
p0
Lp0(0,T ;S̊1,(p0−2)q0,q0

(Ω))
− K̃.

here C5 = C5 (p0, |Ω| , s) and

K̃ = K̃

(
ε, ‖a0‖Lβ1(x,t)(QT ) , ‖a1‖Lα∗(x,t)(QT ) , ‖g‖

L
p0

p0−(s+1) (0,T ;Lp̃0
∗

(Ω))

)
.

By the embedding

Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
⊂ Lp0 (QT ) ⊂ Lα(x,t) (QT ) ,

weak compactness and boundedness of

f : Lp0
(

0, T ; S̊1,(p0−2)q0,q0 (Ω)
)
∩W 1,q0

(
0, T ;W−1,q0 (Ω)

)
→ Lq0

(
0, T ;W−1,q0 (Ω)

)
follows from Lemma 3.4 and Lemma 3.5. Thus by the virtue of the proof of Theorem
3.2, we get the desired result.

4. Homogeneous Case

In this section, we analyze problem (1.1) in homogeneous case. We establish
sufficient conditions which ensure that problem (1.1) has only trivial solution under
these conditions.

Theorem 4.1. Let conditions of Theorem 3.2 be fulfilled with the following as-
sumptions:

(i) Let h(x, t) = 0 and p = 2, p0 > 2.

(ii) Condition (3.2) is satisfied with a3(x, t) = 0.

(iii) The functional ‖g‖L2(Ω)(t) is bounded for almost every t ∈ R+,

then problem (1.1) has only trivial solution.
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Proof. Conditions of Theorem 4.1 provide that (1.1) has a solution in S0. It follows
from Definition 3.1 that every weak solution satisfies the following relation,

1

2

d

dt
‖u‖2L2(Ω) +

n∑
i=1

∫
Ω

(
|u|p0−2 (Diu)2) dx +

∫
Ω

a (x, t, u)udx +

∫
Ω

g (x, t) ‖u‖sL2(Ω) udx = 0

then we get

1

2

d

dt
‖u‖2L2(Ω) +

4

p2
0

n∑
i=1

∫
Ω

(Di(|u|
p0
2 ))2dx +

∫
Ω

a (x, t, u)udx +

∫
Ω

g (x, t) ‖u‖sL2(Ω) udx = 0

by using imbedding inequality and condition (ii), we deduce that

1

2

d

dt
‖u‖2L2(Ω) +

4

p2
0c

∫
Ω

|u|p0 dx+

∫
Ω

g(x, t)‖u‖sL2(Ω)udx ≤ 0

employing Hölder inequality and condition (iii) to the last term we find that

1

2

d

dt
‖u‖2L2(Ω) +

4

p2
0c

∫
Ω

|u|p0 dx−K‖u‖s+1
L2(Ω) ≤ 0

where K > 0 is a constant. From embedding inequality, we obtain

1

2

d

dt
‖u‖2L2(Ω) +

4

p2
0c |Ω|

p0−2
2

‖u‖p0L2(Ω) −K‖u‖
s+1
L2(Ω) ≤ 0,

whence denoting by y = ‖u‖2L2(Ω) and µ = p0
2 , we have

1

2

dy

dt
+

4

p2
0c |Ω|

p0−2
2

yµ −Ky
s+1
2 ≤ 0

by utilizing Young inequality to the last term in the above equation, we attain

1

2

dy

dt
+ (

4

p2
0c |Ω|

p0−2
2

−Kε)yµ −Kc(ε)y ≤ 0

where ε < 4

Kp20c|Ω|
p0−2

2

from here, we conclude

1

2

dy

dt
≤ Kc(ε)y.

Integrating the last inequality and considering y(0) = 0, we arrive at the desired
result. 2
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