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ABSTRACT. We study a generalization of the classical Pentagonal Number Theorem and
its applications. We derive new identities for certain infinite series, recurrence relations
and convolution sums for certain restricted partitions and divisor sums. We also derive
new identities for Bell polynomials.

1. Introduction

The Pentagonal Number Theorem is one of Euler’s most profound discoveries.
It is the following identity:

o0

(1 _ qn) — Z (_1)nqn(3n—1)/2

1 n=-—oo

8

n

where n(3n — 1)/2 is called the n'® pentagonal numbers. The pentagonal numbers
represent the number of distinct points which may be arranged to form superim-
posed regular pentagons such that the number of points on the sides of each re-
spective pentagonal is the same. Bell’s article [2] is an excellent reference about the
Pentagonal Number Theorem and its applications from the historical perspective.
Andrews’s article [1] is devoted to a modern exposition of Euler’s original proof of
the theorem.

Let N = {1,2,...} and Ny = {0,1,2,...}. The function p(n) is the number
of integer partitions of n. The function o(n) is the sum of all divisors of n. Euler
applied the Pentagonal Number Theorem to study various properties of integer
partitions and divisor sums. In particular, there is a convolution formula that
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600 Ho-Hon Leung

connects the functions p(n) and o(n):

(1.1) np(n) = 3 o(k)p(n — ).
k=0

Apart from this, there are recurrence relations for p(n) and o(n) which are inti-
mately related to the Pentagonal Number Theorem:

p(n) =pn—1)+pn—-2)—pn->5) —pn—-7)+...,

on)=cn—-1)4+0cn—-2)—cn—-5)—on—-"7)+....

The readers are invited to read the survey article by Osler et. al. [4] for a readable
account of the connections between functions p(n) and o(n).

One may wonder if there are recurrence relations and convolution formulas for
(restricted) integer partitions and divisor sums in terms of other polygonal numbers
(e.g. triangular numbers, heptagonal numbers ...). The goal of this article is to
give positive answers to this question based on a generalization of the Pentagonal
Number Theorem.

Unless mentioned otherwise, throughout the paper, all equations in the variable
¢ which involve infinite sums and infinite products hold true if |¢| < 1.

2. Main Results

2.1. Main Theorem and Some Corollaries

Let g > 3 and n € Z. We denote the generalized n'® g-gonal number [6, p.40]
by
n((g—2)n—(g—4)

5 .

For n € N, P, ,, represents the number of points which may be arranged to form
regular g-gons such that the number of points on the sides of each respective g-gon
is the same as n.

Let (a;q)n be the g-Pochhammer symbol for n > 1. That is,

Pg,n:

n—1

(@;@)n = [[(1—ag®) = (1 —a)(1 —ag)(1 —ag®) ... (1 —ag"").
k=0

Considered as a formal power series in ¢, the definition of g-Pochhammer symbol
can be extended to an infinite product. That is,

o0

(a:q)oc = [ (1 ag)-

k=0

We note that (¢; ¢)eo is the Euler’s function.
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We state the following theorem.
Theorem 2.1.1. Let g > 5.

o0

(@0 oo (07 %07 H)oo(@ %107 oo = Y (=1)"¢" 0.

n=—oo

Proof. We replace ¢ by ¢9=2/2 and z by ¢—9=%/2 in the Jacobi’s Triple Product
Identity,

o0 o0
Z anZn _ H(l _ q2n)(1 + q2n—1z)(1 + q2n—lz—1)
n=-—o00 n=1
to get the desired result. O

Remark 2.1.2. If g = 5, we get Euler’s Pentagonal Number Theorem by Theorem
2.1.1.

If n € N, then

(—n)((g=2)(=n) —(g—4)) _n((g—=2)n+(g-4))
2 2 '
Let g > 3 and n € N. Let Q. be the following numbers:

Qyn = n((g - 2)n2+ (9—4)

We note that Qg,, = Py,—n. Theorem 2.1.1 can be restated as

21) (@0 Deo(@? %07 H)oo(¢% =1+ Z Fam g qQom).

The n'" triangular number A,, is

nn+1)

An = 2

= PS,n-
We note that

A2n—1 = Pﬁ,na AQ'II = QG,n~
The following corollary is clear by (2.1) when g = 6.
Corollary 2.1.3.

oo oo
(30100 (6% 0" oo (670 oo = 1= Y (5041 +qB02) 13 (qBerrs 4 gBore),
k=0 =0

Corollary 2.1.4.

& n 24n

> o - (20w )(”Z "+ ).

n=0 n=0
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Proof. Based on one of the Rogers-Ramanujan identities [9, 11], we get
0 n?in
o 1 _ (4:4°) 0 (a1 4%) 0 (%1 4%) o
— (@0 (6%50°)0(0%0%)c  (@0°)oc (0?0700 (0% 47) 0 (0% 4°) 0 (475 67)

(2.2) = (m) ((q;q5)oo(q4;q5)oo(q5;q5)oo)-

We get the desired result based on the generating function of p(n) and the identity
(2.1) when g = 7. O

Corollary 2.1.5.

oo

1—|—Z 5P5n+q5Q5n):(Z

n=0

)(1+Z )'(@7 + %)

(@39

Proof. We replace ¢ by ¢° in the Pentagonal Number Theorem to get
(oo}

(2.3) (q5; q5)oo =1+ Z(_l)"(q5ps,n + q5Q5,n)_
n=1

On the other hand,

( 1
(45900 (0% ¢°) o

We recall one of the Rogers-Ramanujan identities [9, 11],

(2.4) (@°;0")o0 = )((q;qs)oo(q4;q5)oo(q5;q5)oo)-

oo

25) S ]

= @Ga)n  (G9)o(d"6%)

By putting (2.3), (2.5) into (2.4), we get the desired result based on the identity
(2.1) when g = 7. O
2.2. Recurrence Relations for Some Restricted Integer Partitions

Definition 2.2.1. The function (p25 + p3;5)(n) is the number of partitions of n
such that each part is either congruent to 2 modulo 5 or 3 modulo 5. We extend
the domain of (p25 + p35)(n) to Z by setting (pa2,5 + ps,5)(z) = 0 if = ¢ No.

Theorem 2.2.2.

(p2,5 + p3,5)(n (n) + > (=¥ (p(n — Prp) + p(n — Q).
k=1

Proof. By Corollary 2.1.4 and the generating function of (p2 5 + ps5)(n), we get
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1
(4% 4°) (4% 4°) 0

:(gp(n )(1—1—72 P”—I—qQ”)).

We get the desired result by comparing coefficients of ¢"™ on both sides of the
equation. O

Example 2.2.3. Let n = 8. Then we have 8 =2+24+2+2=3+3+2. So,
(p2,5 + p3,5)(8) = 3. The generalized heptagonal numbers are Pr; = 1,Q71 =
4,P;2 ="7... and hence

p(8) = p(8 = Pr1) —p(8 = Q71) +p(8 — Pr2) =p(8) — p(7) — p(4) + p(1)
=22-15-5+1=3
= (p2,5 +13,5)(8).

oo
Z P25+ p35)(n)q" =
n=0

Definition 2.2.4. The function (p15 + pas)(n) is the number of partitions of n
such that each part is either congruent to 1 modulo 5 or 4 modulo 5. We extend
the domain of (p1 5 + pas)(n) to Z by setting (p1,5 + pas)(xz) =0 if x ¢ No.

Theorem 2.2.5.

603

(P15 +pas)(n) =M+ Z DM ((prs +pas)(n = Prg) + (015 + pas)(n — Q1))

where

M {(—1)”‘, n = 5P5 n, or 5Qs m for some m;

0, otherwise.
Proof. The generating function of (p1,5 + pas)(n) is

1
(4:4°) oo (q

4.

oo
P15 + Pa, q" = .
g 1 5 5 ) ’qs)oo

Now the result is obvious by comparing coefficients of ¢" in (2.4) and by Corollary
2.1.5. O

Example 2.2.6. Let n = 9. The generalized heptagonal numbers are P;; =
1,Q71 =4,Pr2="7.... By Theorem 2.2.5, we get

(P15 +P4,5)(9) = (P15 + Pa5)(8) + (P1,5 + Pa5)(5) — (P1,5 + Pa5)(2).

It can be easily verified since
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(p15+pa5)9) =4, 9=T1+14+14+1+1+14+1+1+1=44+1+1+14+1+1=444+1,
(P15 +Pa5)(8) =3, 14+1+1+1+1+14+1+1=4+1+14+1+1=4+4,

(P15 +pas)(B) =2, 14+14+1+1+1=4+1,

(p1,5 +pa5)(2) =1, 1+4+1.

Definition 2.2.7. The function g(n) is the number of partitions of n such that
each part is distinct. We extend the domain of ¢(n) to Q by setting ¢(z) = 0 if
x ¢ NQ.

We obtain two recurrence relations for g(n).
Theorem 2.2.8.

oo

q(n) =K+ Z(—l)k+1(q(n —2P5 ) +q(n —2Qs1))
k=1

where
K {1, n = A, for some m;
0, otherwise.
Proof. By an identity due to Guass ([6, p.40]),
(2.6)
o0 2. 2 s
Z:OqA" = ((qq;’;g)); = ((qz;tf)oo)> : (m) - ((qz;tf)oo)) : (T;q(N)q”>

where the last equality is due to Euler’s Theorem. We replace ¢ by ¢? in the
Pentagonal Number Theorem to get

(2.7) (%070 =1+ Z(_l)n(qzﬂ),n 4 g2Qm),
n=1

By putting (2.7) into (2.6) and comparing coefficients of ¢ on both sides of the
equation, we get the result as desired. O

Theorem 2.2.9.
2n — P5’k

alm) = L+ 30 () (o0 4 g (2 2
k=1

where
=1, 2n = Aypy1, Dary2 for some k;

L=<¢1, 2n = Aygpy3, Agpra for some k;

0, otherwise.
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Proof.
1
.4 3. 4 4. 4\ _ .
(2.8) (640074 ) 0 (074 )0 = ((q,q)oo) ((QQ;q4)OO).
We replace g by ¢? in Euler’s Theorem to get
1 oo
(2.9) (ﬁ) [Ta+q* Z
k=1

7% 4%) oo

By putting (2.9) into (2.8), applying Corollary 2.1.3 to the left hand side of (2.8)
and applying the Pentagonal Number Theorem to (¢; ¢)s, we get

(210) 1— i (qA4k+1 + qA4k+2) + i (qA4k+3 + qA4k+4)
k=0 k=0

NE

<1+Z Panqusn)),(

Comparing the coefficients of ¢" on both sides of (2.10), we get the result as
desired. O

q(n)qz”) :

n=1

Example 2.2.10. Let n = 15. We note that 15 = As. The generalized pentagonal
numbers are

Psi1=1,Q51=2, Ps2=05, Q52 =17,
P53 =12, Q53 =15, P54 =22, Q54 = 26,

By Theorem 2.2.8,

q(15) =14 (¢(15 = 2P51) + q(15 — 2Q5,1)) — (¢(15 — 2P5 2) + ¢(15 — 2Q5 2))
—14q(13) +q(11) —q(5) —q(1) =1+ 18+ 12 — 3 — 1 = 27.

Alternatively, by Theorem 2.2.9 and the fact that 2(15) = 30 # A,,, for any m € N.

090525 1o (252 - (252)

=q(14) + q(9) — q(4) — q(2) =22 +8 -2 — 1 =27.

Definition 2.2.11. Let n,r € Ng. Let m € N. The function p, ,,(n) is defined to
be the number of partitions of n such that each part is congruent to » modulo m.
We extend the domain of p, (1) to Z by setting p, () =0 if « ¢ No.

Definition 2.2.12. Let n € Z and m € N. The restricted integer partition p/,(n)
is defined by

Pin(n) 3= Pm—1,m(n) + po,m(n) + p1,m(n)

605
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where p;,(0) := 1 and p},(n) = 0 for n ¢ No.

In particular, if m = 3, then p/, (n) = p4(n) = p(n). The generating function of
pl.(n) is as follows:

1
211) me T (@G0 o (@5 0o (07 4o

It is convenient to introduce the number e, ,, given by

1, n =0;
egn = (=1)F, ifn= P, or Qus;
0, otherwise.
Theorem 2.1.1 can be rewritten as
(212) (44 )oe (@707 oo (7% Z egnd"™

We obtain the following recurrence relation for the restricted partition p),(n) if
m > 3.

Theorem 2.2.13. Let m > 3 and n € N.

Z "+1 (n = Pryok) + i (n — Qo)
k=1

Proof. By (2.11) and (2.12),

o0 o0
(X rtma") (X emrzna”) =1
n=0 n=0
By comparing coefficients of ¢" for n > 1 on both sides of the equation, we get

+ Z p'm P7n+2,k) —|—p;n(n — Qm+2,k)) = 0. O
k=1

Remark 2.2.14. In the case m = 3, Theorem 2.2.13 is reduced to the well-known
recurrence relation for the integer partition p(n).

Definition 2.2.15. The function p], ,,,(n) is the number of partitions of n such that
each partition has an even number of distinct parts, and each part is congruent to
0 modulo m, 1 modulo m or m — 1 modulo m.

Definition 2.2.16. The function p], ,,,(n) is the number of partitions of n such that
each partition has an odd number of distinct parts, and each part is congruent to 0
modulo m, 1 modulo m or m — 1 modulo m.
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Theorem 2.2.17. Letn € N and m > 3.

(_1)k7 n = Ppiokr or Qmya i for some k € N;

p/e,m(n) - pi),m(n) = {

0, otherwise.

Proof. In the infinite product expansion of

m—1, m., m

(50 )00 (@™ 750™) 00 (@™5 0™ ) 05

the coefficients of ¢V has 41 contribution from a partition of N that consists of an
even number of parts, where each part is congruent to 0 modulo m, 1 modulo m or
m — 1 modulo m. It has —1 contribution from a partition of IV that consists of an
odd number of parts, where each part is congruent to 0 modulo m, 1 modulo m or
m — 1 modulo m. By Theorem 2.1.1, our result follows immediately. O

Remark 2.2.18. In the case m = 3, Theorem 2.2.17 is reduced to the interesting
observation made by Legendre on the Pentagonal Number Theorem [1, p.2].

2.3. Recurrence Relations and Convolution Sums for Restricted Divisor
Sums

Definition 2.3.1. Let r € Ng. Let n,m € N. The function o, ,,(n) is defined by

O'r,m(n) = Z d.

{deN,d|n,d=r mod m}
Definition 2.3.2. Let n,m € N. The restricted divisor sum o7,(n) is defined by
on,(n) == 0pm_1.m(n) + 00,m(n) + o1,m(n).
The restricted Lambert series for o, ,,,(n) is

Z Ur,m(n)qn = Z 4
n=1

—an’
{n | n=r mod m} 1—¢

n

The restricted Lambert series for o7, (n) is

(2.13) > o ()" = 3 ng"
n=1

1—qn
{n | n=0 mod m, n=1 mod m, n=m—1 mod m}

The following theorems connect p!, (n), o/, (n) and the generalized n'"-gonal
numbers.

Theorem 2.3.3. Let m >3 and n € N.

oo

o1, (n) = (1) (Prusa g P(n = Prngok) + Quitak - D (0 — Qo))
k=0
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Proof. Let m € N such that m > 3. Define the function G,,(x) as follows:

(1 _ ka)(l _ kaf(mfl))(l _ kafl).

)

(2.14) G (z) =
k

Il
-

Taking the logarithm of G,,(z), we get

Z ln 1—1’ —|—1n(1—1~km (m— 1))+1H( kmfl)).
k=1

Differentiating and then multiplying by x, we get

(2.15)
xG’ () <= [ kmzFm (km — (m — 1))zkm=m=1 (km — 1)zkm—1
) Zl (1 _ ka 1 — ghkm—(m-1) + 1 — phm—1 )
By (2.11),
(2.16) =3 a(n)a
n=0
By (2.12),
(2.17) xGl ( Z Nem+2.nx"

Putting (2.13), (2.16), (2.17) into (2.15), we get

(o ] o0 o0
(Zp'm(n)z") (Z nem+2,ngc”> =— Z o, (n)x
n=0 n=0 n=1
We get the desired result by comparing coefficients of 2™ on both sides of the

equation. O

Theorem 2.3.4. Let m > 3 and n € N.

( ) - *nem+2 n + Z k+1 Pm+2,k) + O—;n(n - Qm+2,k))~

Proof. By (2.13), (2.15), (2.17), we get

(2.18) — i nemt2nx" = ( i em+2,nm”> ( i U;n(n)x")
n=0 n=0 n=0
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We get the desired result by comparing coefficients of ™ on both sides of the
equation. O

Theorem 2.3.5. Let m > 3 and n € N.

npl,(n) =Y oy, (k)p, (n — k).
k=0

Proof. Based on the definition of G,,(z) in (2.14), let the function F,(x) be

) = g
Then
(2.19) Fi(e)= —om@ _ _Gn@) 1 ___Gu@) p o

By (2.13), (2.15),

(2.20) - gigz; ="l (et

By (2.16),

(2.21) Fj,(x) =Y npl,(n)z"".
n=0

Putting (2.16), (2.20), (2.21) into (2.19) and multiplying by =, we get

(2.22) i npl, (n)z™ = ( i Uin(n)x”> ( i p:n(n)x”)
n=0 n=0 n=0

We get the desired result by comparing coefficients of " on both sides of the
equation (2.22). O

Remark 2.3.6. In the case m = 3, Theorem 2.3.5 is identical to (1.1).

3. Identities for Bell Polynomials

3.1. Preliminaries

Let (z1,x2,...) be a sequence of real numbers. The partial exponential Bell
polynomials are polynomials given by
_ n! z1 J1 T2 J2 Tn—k+1 In—k+1
Bhk(z1, 22,y Tn—kt1) = Z gilgal . Jnkat! ( 1! ) ( 21 ) o ((n —k+ 1)!)

w(n,k)
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where 7(n, k) is the positive integer sequence (j1, j2, jn—k+1) satisfies the following
equations:

Jitja+ - F Ikt =k,
A+2p+ -+ n—k+1)j,_k1 =n.

For n > 1, the n'*-complete Bell polynomial B,,(z1,...,x,) is the following:

B, (zy...x,) = ZBn,k(ml» ey T kt1)-
k=1

n

The complete exponential Bell polynomials can also be defined by power series
expansion as follows:

& tm > tn
(3.1) exp(meE) :ZB”(xl""’x”)H’
m=1 n=0
where By = 1. Alternatively, the complete Bell polyomials can be recursively

defined by
" /n

(3.2) Bpii(zy,. ., pq1) = Z ( .)Bni(fﬂh e D) Tig 1 -
i—o \!

One interesting property of the Bell polynomials is that there exists an inversion
formula in the following sense. If we define

(33) Yn :Bn(l‘laan"'axn)7

then

(3.4) Tn =Y (D k=1 Buk@r, - Ynks1)-
k=1

For detailed properties of such inverse formulas, see the paper written by Chaou
et. al [5]. Bell polynomials were first introduced by Bell [2]. The books writ-
ten by Comtet [7] and Riordan [10] serve as excellent references for the numerous
applications of Bell polynomials in combinatorics. Recently, there has been ex-
tensive research in finding identities on (partial/complete) Bell polynomials. The
paper written by W. Wang and T. Wang [12] provides many interesting identities
for partial Bell polynomials. Bouroubi and Benyahia-Tani [3] and the author [§]
proved some new identities for complete Bell polynomials based on Ramanujan’s
congruences.
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3.2. Identities for Complete Bell Polynomials and Some Corollaries

We recall the notations o7, (n), p,,(n) and e4 , used in Section 2.2 and Section
2.3.

Theorem 3.2.1. Let n € N and m > 3.
Bn(dh d27 cee 7dn) =n!- €m+2,n

where d, = —(n—1)!- g/, (n).

Proof. By (2.14), we take the logarithm of G,,(z) and use the formal power series
expansion of In(1 — x) to get

(35) ln(Gm(x)) = i (hl(]. — iCkm) + 11’1(1 — ka—(m—l)) + 1n(1 _ ka—l))

k=1
x© X (ka)g x© x> (kaf(mfl))j x© x> (kafl)j
Sy e s e
k=1 j=1 k=1 j=1 k=1 j=1
(3.6) ==y %n(”)x" =Y (~(n-1)- g;(n))%?.
k=1 k=1

(3.7) Gm() zexp<2dnmn—7> = X:Bn(dh...,dn)%I
k=1 ’ n=0 '

where d,, = —(n — 1)! - 0/,(n) and the last equality is due to (3.1). By (2.12),

(3.8) G (z) = Z Em+2.nT".
n=0
Now the result is clear by comparing (3.7) and (3.8). a

Theorem 3.2.2. Let n € N and m > 3.
Bp(ci,¢2,...,¢0) =nl-pl.(n)

where ¢, = (n— 1)1 - al,(n).

Proof. 1t is essentially the same as the proof of Theorem 3.2.1. Let the function
F,.(x) be
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By taking logarithm of F,,,(z) and using the formal power series of In(1 — ), we get

In( Z 1n 1—2F )+ 1In(1 — ghm—(m= 1)) + In(1 ka—l))
k=1

(3.9 Z (n=1)" 0 (n))m—
k=1

n!

We get the result as desired by taking exponential on both sides of (3.9), applying
(3.1) and generating function of p/, (n) in (2.11). O

Remark 3.2.3. It is worthwhile to notice that Theorem 2.3.4 (resp. Theorem
2.3.5) can be proved by applying Theorem 3.2.1 (resp. Theorem 3.2.2) and the
convolution properties of complete Bell polynomials shown in (3.2). More precisely,
by Theorem 3.2.2, the equation (3.2) becomes

(n+1)!-p, (n+1) i()n—z pl,(n—i)-il ol (i+1)

n

(3.10) (n+1)pl,(n+1) Z (n—1d)o,,(i+1).
i=0

Now it is obvious that (3.10) is equivalent to Theorem 2.3.5. Likewise, Theorem
2.3.4 can be proved by using Theorem 3.2.1 and the equation (3.2).

By the inversion formulas of Bell polynomials as stated in (3.3) and (3.4), we
immediately obtain the following corollaries due to Theorem 3.2.1 and Theorem
3.2.2 respectively.

Corollary 3.2.4. Letn € N and m > 3.

1 o0
oh(n) = S (=D k=11 Bok(Uemio, 2 emia, -, (n—k+ 1)l emyan ki)

om(n) = (2D T =Dl B g (190 (1), 2000 (2), -, (kA 1) pl (n—k+1)).

It might come as a surprise that RHS of the formula in Corollary 3.2.4 is equal
to the RHS of the formula in Corollary 3.2.5 as the former one leads to a simple
computation (many terms e,, 2, are zeros) while the latter one gives a rather
complicated computation due to the terms pl,(n).
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